
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'zshcompctl.1' command

$ man zshcompctl.1

ZSHCOMPCTL(1) General Commands Manual ZSHCOMPCTL(1)

NAME

 zshcompctl - zsh programmable completion

DESCRIPTION

 This version of zsh has two ways of performing completion of words on

 the command line. New users of the shell may prefer to use the newer

 and more powerful system based on shell functions; this is described in

 zshcompsys(1), and the basic shell mechanisms which support it are de?

 scribed in zshcompwid(1). This manual entry describes the older com?

 pctl command.

 compctl [-CDT] options [command ...]

 compctl [-CDT] options [-x pattern options - ... --]

 [+ options [-x ... --] ... [+]] [command ...]

 compctl -M match-specs ...

 compctl -L [-CDTM] [command ...]

 compctl + command ...

 Control the editor's completion behavior according to the supplied set

 of options. Various editing commands, notably expand-or-complete-word,

 usually bound to tab, will attempt to complete a word typed by the

 user, while others, notably delete-char-or-list, usually bound to ^D in

 EMACS editing mode, list the possibilities; compctl controls what those

 possibilities are. They may for example be filenames (the most common

 case, and hence the default), shell variables, or words from a Page 1/15

 user-specified list.

COMMAND FLAGS

 Completion of the arguments of a command may be different for each com?

 mand or may use the default. The behavior when completing the command

 word itself may also be separately specified. These correspond to the

 following flags and arguments, all of which (except for -L) may be com?

 bined with any combination of the options described subsequently in the

 section `Option Flags':

 command ...

 controls completion for the named commands, which must be listed

 last on the command line. If completion is attempted for a com?

 mand with a pathname containing slashes and no completion defi?

 nition is found, the search is retried with the last pathname

 component. If the command starts with a =, completion is tried

 with the pathname of the command.

 Any of the command strings may be patterns of the form normally

 used for filename generation. These should be quoted to protect

 them from immediate expansion; for example the command string

 'foo*' arranges for completion of the words of any command be?

 ginning with foo. When completion is attempted, all pattern

 completions are tried in the reverse order of their definition

 until one matches. By default, completion then proceeds as nor?

 mal, i.e. the shell will try to generate more matches for the

 specific command on the command line; this can be overridden by

 including -tn in the flags for the pattern completion.

 Note that aliases are expanded before the command name is deter?

 mined unless the COMPLETE_ALIASES option is set. Commands may

 not be combined with the -C, -D or -T flags.

 -C controls completion when the command word itself is being com?

 pleted. If no compctl -C command has been issued, the names of

 any executable command (whether in the path or specific to the

 shell, such as aliases or functions) are completed.

 -D controls default completion behavior for the arguments of com? Page 2/15

 mands not assigned any special behavior. If no compctl -D com?

 mand has been issued, filenames are completed.

 -T supplies completion flags to be used before any other processing

 is done, even before processing for compctls defined for spe?

 cific commands. This is especially useful when combined with

 extended completion (the -x flag, see the section `Extended Com?

 pletion' below). Using this flag you can define default behav?

 ior which will apply to all commands without exception, or you

 can alter the standard behavior for all commands. For example,

 if your access to the user database is too slow and/or it con?

 tains too many users (so that completion after `~' is too slow

 to be usable), you can use

 compctl -T -x 's[~] C[0,[^/]#]' -k friends -S/ -tn

 to complete the strings in the array friends after a `~'. The

 C[...] argument is necessary so that this form of ~-completion

 is not tried after the directory name is finished.

 -L lists the existing completion behavior in a manner suitable for

 putting into a start-up script; the existing behavior is not

 changed. Any combination of the above forms, or the -M flag

 (which must follow the -L flag), may be specified, otherwise all

 defined completions are listed. Any other flags supplied are

 ignored.

 no argument

 If no argument is given, compctl lists all defined completions

 in an abbreviated form; with a list of options, all completions

 with those flags set (not counting extended completion) are

 listed.

 If the + flag is alone and followed immediately by the command list,

 the completion behavior for all the commands in the list is reset to

 the default. In other words, completion will subsequently use the op?

 tions specified by the -D flag.

 The form with -M as the first and only option defines global matching

 specifications (see zshcompwid). The match specifications given will be Page 3/15

 used for every completion attempt (only when using compctl, not with

 the new completion system) and are tried in the order in which they are

 defined until one generates at least one match. E.g.:

 compctl -M '' 'm:{a-zA-Z}={A-Za-z}'

 This will first try completion without any global match specifications

 (the empty string) and, if that generates no matches, will try case in?

 sensitive completion.

OPTION FLAGS

 [-fcFBdeaRGovNAIOPZEnbjrzu/12]

 [-k array] [-g globstring] [-s subststring]

 [-K function]

 [-Q] [-P prefix] [-S suffix]

 [-W file-prefix] [-H num pattern]

 [-q] [-X explanation] [-Y explanation]

 [-y func-or-var] [-l cmd] [-h cmd] [-U]

 [-t continue] [-J name] [-V name]

 [-M match-spec]

 The remaining options specify the type of command arguments to look for

 during completion. Any combination of these flags may be specified;

 the result is a sorted list of all the possibilities. The options are

 as follows.

 Simple Flags

 These produce completion lists made up by the shell itself:

 -f Filenames and file system paths.

 -/ Just file system paths.

 -c Command names, including aliases, shell functions, builtins and

 reserved words.

 -F Function names.

 -B Names of builtin commands.

 -m Names of external commands.

 -w Reserved words.

 -a Alias names.

 -R Names of regular (non-global) aliases. Page 4/15

 -G Names of global aliases.

 -d This can be combined with -F, -B, -w, -a, -R and -G to get names

 of disabled functions, builtins, reserved words or aliases.

 -e This option (to show enabled commands) is in effect by default,

 but may be combined with -d; -de in combination with -F, -B, -w,

 -a, -R and -G will complete names of functions, builtins, re?

 served words or aliases whether or not they are disabled.

 -o Names of shell options (see zshoptions(1)).

 -v Names of any variable defined in the shell.

 -N Names of scalar (non-array) parameters.

 -A Array names.

 -I Names of integer variables.

 -O Names of read-only variables.

 -p Names of parameters used by the shell (including special parame?

 ters).

 -Z Names of shell special parameters.

 -E Names of environment variables.

 -n Named directories.

 -b Key binding names.

 -j Job names: the first word of the job leader's command line.

 This is useful with the kill builtin.

 -r Names of running jobs.

 -z Names of suspended jobs.

 -u User names.

 Flags with Arguments

 These have user supplied arguments to determine how the list of comple?

 tions is to be made up:

 -k array

 Names taken from the elements of $array (note that the `$' does

 not appear on the command line). Alternatively, the argument

 array itself may be a set of space- or comma-separated values in

 parentheses, in which any delimiter may be escaped with a back?

 slash; in this case the argument should be quoted. For example, Page 5/15

 compctl -k "(cputime filesize datasize stacksize

 coredumpsize resident descriptors)" limit

 -g globstring

 The globstring is expanded using filename globbing; it should be

 quoted to protect it from immediate expansion. The resulting

 filenames are taken as the possible completions. Use `*(/)' in?

 stead of `*/' for directories. The fignore special parameter is

 not applied to the resulting files. More than one pattern may

 be given separated by blanks. (Note that brace expansion is not

 part of globbing. Use the syntax `(either|or)' to match alter?

 natives.)

 -s subststring

 The subststring is split into words and these words are than ex?

 panded using all shell expansion mechanisms (see zshexpn(1)).

 The resulting words are taken as possible completions. The fig?

 nore special parameter is not applied to the resulting files.

 Note that -g is faster for filenames.

 -K function

 Call the given function to get the completions. Unless the name

 starts with an underscore, the function is passed two arguments:

 the prefix and the suffix of the word on which completion is to

 be attempted, in other words those characters before the cursor

 position, and those from the cursor position onwards. The whole

 command line can be accessed with the -c and -l flags of the

 read builtin. The function should set the variable reply to an

 array containing the completions (one completion per element);

 note that reply should not be made local to the function. From

 such a function the command line can be accessed with the -c and

 -l flags to the read builtin. For example,

 function whoson { reply=(`users`); }

 compctl -K whoson talk

 completes only logged-on users after `talk'. Note that `whoson'

 must return an array, so `reply=`users`' would be incorrect. Page 6/15

 -H num pattern

 The possible completions are taken from the last num history

 lines. Only words matching pattern are taken. If num is zero

 or negative the whole history is searched and if pattern is the

 empty string all words are taken (as with `*'). A typical use

 is

 compctl -D -f + -H 0 ''

 which forces completion to look back in the history list for a

 word if no filename matches.

 Control Flags

 These do not directly specify types of name to be completed, but manip?

 ulate the options that do:

 -Q This instructs the shell not to quote any metacharacters in the

 possible completions. Normally the results of a completion are

 inserted into the command line with any metacharacters quoted so

 that they are interpreted as normal characters. This is appro?

 priate for filenames and ordinary strings. However, for special

 effects, such as inserting a backquoted expression from a com?

 pletion array (-k) so that the expression will not be evaluated

 until the complete line is executed, this option must be used.

 -P prefix

 The prefix is inserted just before the completed string; any

 initial part already typed will be completed and the whole pre?

 fix ignored for completion purposes. For example,

 compctl -j -P "%" kill

 inserts a `%' after the kill command and then completes job

 names.

 -S suffix

 When a completion is found the suffix is inserted after the com?

 pleted string. In the case of menu completion the suffix is in?

 serted immediately, but it is still possible to cycle through

 the list of completions by repeatedly hitting the same key.

 -W file-prefix Page 7/15

 With directory file-prefix: for command, file, directory and

 globbing completion (options -c, -f, -/, -g), the file prefix is

 implicitly added in front of the completion. For example,

 compctl -/ -W ~/Mail maildirs

 completes any subdirectories to any depth beneath the directory

 ~/Mail, although that prefix does not appear on the command

 line. The file-prefix may also be of the form accepted by the

 -k flag, i.e. the name of an array or a literal list in paren?

 thesis. In this case all the directories in the list will be

 searched for possible completions.

 -q If used with a suffix as specified by the -S option, this causes

 the suffix to be removed if the next character typed is a blank

 or does not insert anything or if the suffix consists of only

 one character and the next character typed is the same charac?

 ter; this the same rule used for the AUTO_REMOVE_SLASH option.

 The option is most useful for list separators (comma, colon,

 etc.).

 -l cmd This option restricts the range of command line words that are

 considered to be arguments. If combined with one of the ex?

 tended completion patterns `p[...]', `r[...]', or `R[...]' (see

 the section `Extended Completion' below) the range is restricted

 to the range of arguments specified in the brackets. Completion

 is then performed as if these had been given as arguments to the

 cmd supplied with the option. If the cmd string is empty the

 first word in the range is instead taken as the command name,

 and command name completion performed on the first word in the

 range. For example,

 compctl -x 'r[-exec,;]' -l '' -- find

 completes arguments between `-exec' and the following `;' (or

 the end of the command line if there is no such string) as if

 they were a separate command line.

 -h cmd Normally zsh completes quoted strings as a whole. With this op?

 tion, completion can be done separately on different parts of Page 8/15

 such strings. It works like the -l option but makes the comple?

 tion code work on the parts of the current word that are sepa?

 rated by spaces. These parts are completed as if they were argu?

 ments to the given cmd. If cmd is the empty string, the first

 part is completed as a command name, as with -l.

 -U Use the whole list of possible completions, whether or not they

 actually match the word on the command line. The word typed so

 far will be deleted. This is most useful with a function (given

 by the -K option) which can examine the word components passed

 to it (or via the read builtin's -c and -l flags) and use its

 own criteria to decide what matches. If there is no completion,

 the original word is retained. Since the produced possible com?

 pletions seldom have interesting common prefixes and suffixes,

 menu completion is started immediately if AUTO_MENU is set and

 this flag is used.

 -y func-or-var

 The list provided by func-or-var is displayed instead of the

 list of completions whenever a listing is required; the actual

 completions to be inserted are not affected. It can be provided

 in two ways. Firstly, if func-or-var begins with a $ it defines

 a variable, or if it begins with a left parenthesis a literal

 array, which contains the list. A variable may have been set by

 a call to a function using the -K option. Otherwise it contains

 the name of a function which will be executed to create the

 list. The function will be passed as an argument list all

 matching completions, including prefixes and suffixes expanded

 in full, and should set the array reply to the result. In both

 cases, the display list will only be retrieved after a complete

 list of matches has been created.

 Note that the returned list does not have to correspond, even in

 length, to the original set of matches, and may be passed as a

 scalar instead of an array. No special formatting of characters

 is performed on the output in this case; in particular, newlines Page 9/15

 are printed literally and if they appear output in columns is

 suppressed.

 -X explanation

 Print explanation when trying completion on the current set of

 options. A `%n' in this string is replaced by the number of

 matches that were added for this explanation string. The expla?

 nation only appears if completion was tried and there was no

 unique match, or when listing completions. Explanation strings

 will be listed together with the matches of the group specified

 together with the -X option (using the -J or -V option). If the

 same explanation string is given to multiple -X options, the

 string appears only once (for each group) and the number of

 matches shown for the `%n' is the total number of all matches

 for each of these uses. In any case, the explanation string will

 only be shown if there was at least one match added for the ex?

 planation string.

 The sequences %B, %b, %S, %s, %U, and %u specify output at?

 tributes (bold, standout, and underline), %F, %f, %K, %k specify

 foreground and background colours, and %{...%} can be used to

 include literal escape sequences as in prompts.

 -Y explanation

 Identical to -X, except that the explanation first undergoes ex?

 pansion following the usual rules for strings in double quotes.

 The expansion will be carried out after any functions are called

 for the -K or -y options, allowing them to set variables.

 -t continue

 The continue-string contains a character that specifies which

 set of completion flags should be used next. It is useful:

 (i) With -T, or when trying a list of pattern completions, when

 compctl would usually continue with ordinary processing after

 finding matches; this can be suppressed with `-tn'.

 (ii) With a list of alternatives separated by +, when compctl

 would normally stop when one of the alternatives generates Page 10/15

 matches. It can be forced to consider the next set of comple?

 tions by adding `-t+' to the flags of the alternative before the

 `+'.

 (iii) In an extended completion list (see below), when compctl

 would normally continue until a set of conditions succeeded,

 then use only the immediately following flags. With `-t-', com?

 pctl will continue trying extended completions after the next

 `-'; with `-tx' it will attempt completion with the default

 flags, in other words those before the `-x'.

 -J name

 This gives the name of the group the matches should be placed

 in. Groups are listed and sorted separately; likewise, menu com?

 pletion will offer the matches in the groups in the order in

 which the groups were defined. If no group name is explicitly

 given, the matches are stored in a group named default. The

 first time a group name is encountered, a group with that name

 is created. After that all matches with the same group name are

 stored in that group.

 This can be useful with non-exclusive alternative completions.

 For example, in

 compctl -f -J files -t+ + -v -J variables foo

 both files and variables are possible completions, as the -t+

 forces both sets of alternatives before and after the + to be

 considered at once. Because of the -J options, however, all

 files are listed before all variables.

 -V name

 Like -J, but matches within the group will not be sorted in

 listings nor in menu completion. These unsorted groups are in a

 different name space from the sorted ones, so groups defined as

 -J files and -V files are distinct.

 -1 If given together with the -V option, makes only consecutive du?

 plicates in the group be removed. Note that groups with and

 without this flag are in different name spaces. Page 11/15

 -2 If given together with the -J or -V option, makes all duplicates

 be kept. Again, groups with and without this flag are in differ?

 ent name spaces.

 -M match-spec

 This defines additional matching control specifications that

 should be used only when testing words for the list of flags

 this flag appears in. The format of the match-spec string is de?

 scribed in zshcompwid.

ALTERNATIVE COMPLETION

 compctl [-CDT] options + options [+ ...] [+] command ...

 The form with `+' specifies alternative options. Completion is tried

 with the options before the first `+'. If this produces no matches com?

 pletion is tried with the flags after the `+' and so on. If there are

 no flags after the last `+' and a match has not been found up to that

 point, default completion is tried. If the list of flags contains a -t

 with a + character, the next list of flags is used even if the current

 list produced matches.

 Additional options are available that restrict completion to some part

 of the command line; this is referred to as `extended completion'.

EXTENDED COMPLETION

 compctl [-CDT] options -x pattern options - ... --

 [command ...]

 compctl [-CDT] options [-x pattern options - ... --]

 [+ options [-x ... --] ... [+]] [command ...]

 The form with `-x' specifies extended completion for the commands

 given; as shown, it may be combined with alternative completion using

 `+'. Each pattern is examined in turn; when a match is found, the cor?

 responding options, as described in the section `Option Flags' above,

 are used to generate possible completions. If no pattern matches, the

 options given before the -x are used.

 Note that each pattern should be supplied as a single argument and

 should be quoted to prevent expansion of metacharacters by the shell.

 A pattern is built of sub-patterns separated by commas; it matches if Page 12/15

 at least one of these sub-patterns matches (they are `or'ed). These

 sub-patterns are in turn composed of other sub-patterns separated by

 white spaces which match if all of the sub-patterns match (they are

 `and'ed). An element of the sub-patterns is of the form `c[...][...]',

 where the pairs of brackets may be repeated as often as necessary, and

 matches if any of the sets of brackets match (an `or'). The example

 below makes this clearer.

 The elements may be any of the following:

 s[string]...

 Matches if the current word on the command line starts with one

 of the strings given in brackets. The string is not removed and

 is not part of the completion.

 S[string]...

 Like s[string] except that the string is part of the completion.

 p[from,to]...

 Matches if the number of the current word is between one of the

 from and to pairs inclusive. The comma and to are optional; to

 defaults to the same value as from. The numbers may be nega?

 tive: -n refers to the n'th last word on the line.

 c[offset,string]...

 Matches if the string matches the word offset by offset from the

 current word position. Usually offset will be negative.

 C[offset,pattern]...

 Like c but using pattern matching instead.

 w[index,string]...

 Matches if the word in position index is equal to the corre?

 sponding string. Note that the word count is made after any

 alias expansion.

 W[index,pattern]...

 Like w but using pattern matching instead.

 n[index,string]...

 Matches if the current word contains string. Anything up to and

 including the indexth occurrence of this string will not be con? Page 13/15

 sidered part of the completion, but the rest will. index may be

 negative to count from the end: in most cases, index will be 1

 or -1. For example,

 compctl -s '`users`' -x 'n[1,@]' -k hosts -- talk

 will usually complete usernames, but if you insert an @ after

 the name, names from the array hosts (assumed to contain host?

 names, though you must make the array yourself) will be com?

 pleted. Other commands such as rcp can be handled similarly.

 N[index,string]...

 Like n except that the string will be taken as a character

 class. Anything up to and including the indexth occurrence of

 any of the characters in string will not be considered part of

 the completion.

 m[min,max]...

 Matches if the total number of words lies between min and max

 inclusive.

 r[str1,str2]...

 Matches if the cursor is after a word with prefix str1. If

 there is also a word with prefix str2 on the command line after

 the one matched by str1 it matches only if the cursor is before

 this word. If the comma and str2 are omitted, it matches if the

 cursor is after a word with prefix str1.

 R[str1,str2]...

 Like r but using pattern matching instead.

 q[str]...

 Matches the word currently being completed is in single quotes

 and the str begins with the letter `s', or if completion is done

 in double quotes and str starts with the letter `d', or if com?

 pletion is done in backticks and str starts with a `b'.

EXAMPLE

 compctl -u -x 's[+] c[-1,-f],s[-f+]' \

 -g '~/Mail/*(:t)' - 's[-f],c[-1,-f]' -f -- mail

 This is to be interpreted as follows: Page 14/15

 If the current command is mail, then

 if ((the current word begins with + and the previous word is -f)

 or (the current word begins with -f+)), then complete the

 non-directory part (the `:t' glob modifier) of files in the directory

 ~/Mail; else

 if the current word begins with -f or the previous word was -f, then

 complete any file; else

 complete user names.

zsh 5.8 February 14, 2020 ZSHCOMPCTL(1)

Page 15/15

