
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'userfaultfd.2' command

$ man userfaultfd.2

USERFAULTFD(2) Linux Programmer's Manual USERFAULTFD(2)

NAME

 userfaultfd - create a file descriptor for handling page faults in user

 space

SYNOPSIS

 #include <sys/types.h>

 #include <linux/userfaultfd.h>

 int userfaultfd(int flags);

 Note: There is no glibc wrapper for this system call; see NOTES.

DESCRIPTION

 userfaultfd() creates a new userfaultfd object that can be used for

 delegation of page-fault handling to a user-space application, and re?

 turns a file descriptor that refers to the new object. The new user?

 faultfd object is configured using ioctl(2).

 Once the userfaultfd object is configured, the application can use

 read(2) to receive userfaultfd notifications. The reads from user?

 faultfd may be blocking or non-blocking, depending on the value of

 flags used for the creation of the userfaultfd or subsequent calls to

 fcntl(2).

 The following values may be bitwise ORed in flags to change the behav?

 ior of userfaultfd():

 O_CLOEXEC

 Enable the close-on-exec flag for the new userfaultfd file de? Page 1/14

 scriptor. See the description of the O_CLOEXEC flag in open(2).

 O_NONBLOCK

 Enables non-blocking operation for the userfaultfd object. See

 the description of the O_NONBLOCK flag in open(2).

 When the last file descriptor referring to a userfaultfd object is

 closed, all memory ranges that were registered with the object are un?

 registered and unread events are flushed.

 Usage

 The userfaultfd mechanism is designed to allow a thread in a multi?

 threaded program to perform user-space paging for the other threads in

 the process. When a page fault occurs for one of the regions regis?

 tered to the userfaultfd object, the faulting thread is put to sleep

 and an event is generated that can be read via the userfaultfd file de?

 scriptor. The fault-handling thread reads events from this file de?

 scriptor and services them using the operations described in

 ioctl_userfaultfd(2). When servicing the page fault events, the fault-

 handling thread can trigger a wake-up for the sleeping thread.

 It is possible for the faulting threads and the fault-handling threads

 to run in the context of different processes. In this case, these

 threads may belong to different programs, and the program that executes

 the faulting threads will not necessarily cooperate with the program

 that handles the page faults. In such non-cooperative mode, the

 process that monitors userfaultfd and handles page faults needs to be

 aware of the changes in the virtual memory layout of the faulting

 process to avoid memory corruption.

 Starting from Linux 4.11, userfaultfd can also notify the fault-han?

 dling threads about changes in the virtual memory layout of the fault?

 ing process. In addition, if the faulting process invokes fork(2), the

 userfaultfd objects associated with the parent may be duplicated into

 the child process and the userfaultfd monitor will be notified (via the

 UFFD_EVENT_FORK described below) about the file descriptor associated

 with the userfault objects created for the child process, which allows

 the userfaultfd monitor to perform user-space paging for the child Page 2/14

 process. Unlike page faults which have to be synchronous and require

 an explicit or implicit wakeup, all other events are delivered asyn?

 chronously and the non-cooperative process resumes execution as soon as

 the userfaultfd manager executes read(2). The userfaultfd manager

 should carefully synchronize calls to UFFDIO_COPY with the processing

 of events.

 The current asynchronous model of the event delivery is optimal for

 single threaded non-cooperative userfaultfd manager implementations.

 Userfaultfd operation

 After the userfaultfd object is created with userfaultfd(), the appli?

 cation must enable it using the UFFDIO_API ioctl(2) operation. This

 operation allows a handshake between the kernel and user space to de?

 termine the API version and supported features. This operation must be

 performed before any of the other ioctl(2) operations described below

 (or those operations fail with the EINVAL error).

 After a successful UFFDIO_API operation, the application then registers

 memory address ranges using the UFFDIO_REGISTER ioctl(2) operation.

 After successful completion of a UFFDIO_REGISTER operation, a page

 fault occurring in the requested memory range, and satisfying the mode

 defined at the registration time, will be forwarded by the kernel to

 the user-space application. The application can then use the UFF?

 DIO_COPY or UFFDIO_ZEROPAGE ioctl(2) operations to resolve the page

 fault.

 Starting from Linux 4.14, if the application sets the UFFD_FEATURE_SIG?

 BUS feature bit using the UFFDIO_API ioctl(2), no page-fault notifica?

 tion will be forwarded to user space. Instead a SIGBUS signal is de?

 livered to the faulting process. With this feature, userfaultfd can be

 used for robustness purposes to simply catch any access to areas within

 the registered address range that do not have pages allocated, without

 having to listen to userfaultfd events. No userfaultfd monitor will be

 required for dealing with such memory accesses. For example, this fea?

 ture can be useful for applications that want to prevent the kernel

 from automatically allocating pages and filling holes in sparse files Page 3/14

 when the hole is accessed through a memory mapping.

 The UFFD_FEATURE_SIGBUS feature is implicitly inherited through fork(2)

 if used in combination with UFFD_FEATURE_FORK.

 Details of the various ioctl(2) operations can be found in ioctl_user?

 faultfd(2).

 Since Linux 4.11, events other than page-fault may enabled during UFF?

 DIO_API operation.

 Up to Linux 4.11, userfaultfd can be used only with anonymous private

 memory mappings. Since Linux 4.11, userfaultfd can be also used with

 hugetlbfs and shared memory mappings.

 Reading from the userfaultfd structure

 Each read(2) from the userfaultfd file descriptor returns one or more

 uffd_msg structures, each of which describes a page-fault event or an

 event required for the non-cooperative userfaultfd usage:

 struct uffd_msg {

 __u8 event; /* Type of event */

 ...

 union {

 struct {

 __u64 flags; /* Flags describing fault */

 __u64 address; /* Faulting address */

 } pagefault;

 struct { /* Since Linux 4.11 */

 __u32 ufd; /* Userfault file descriptor

 of the child process */

 } fork;

 struct { /* Since Linux 4.11 */

 __u64 from; /* Old address of remapped area */

 __u64 to; /* New address of remapped area */

 __u64 len; /* Original mapping length */

 } remap;

 struct { /* Since Linux 4.11 */

 __u64 start; /* Start address of removed area */ Page 4/14

 __u64 end; /* End address of removed area */

 } remove;

 ...

 } arg;

 /* Padding fields omitted */

 } __packed;

 If multiple events are available and the supplied buffer is large

 enough, read(2) returns as many events as will fit in the supplied buf?

 fer. If the buffer supplied to read(2) is smaller than the size of the

 uffd_msg structure, the read(2) fails with the error EINVAL.

 The fields set in the uffd_msg structure are as follows:

 event The type of event. Depending of the event type, different

 fields of the arg union represent details required for the event

 processing. The non-page-fault events are generated only when

 appropriate feature is enabled during API handshake with UFF?

 DIO_API ioctl(2).

 The following values can appear in the event field:

 UFFD_EVENT_PAGEFAULT (since Linux 4.3)

 A page-fault event. The page-fault details are available

 in the pagefault field.

 UFFD_EVENT_FORK (since Linux 4.11)

 Generated when the faulting process invokes fork(2) (or

 clone(2) without the CLONE_VM flag). The event details

 are available in the fork field.

 UFFD_EVENT_REMAP (since Linux 4.11)

 Generated when the faulting process invokes mremap(2).

 The event details are available in the remap field.

 UFFD_EVENT_REMOVE (since Linux 4.11)

 Generated when the faulting process invokes madvise(2)

 with MADV_DONTNEED or MADV_REMOVE advice. The event de?

 tails are available in the remove field.

 UFFD_EVENT_UNMAP (since Linux 4.11)

 Generated when the faulting process unmaps a memory Page 5/14

 range, either explicitly using munmap(2) or implicitly

 during mmap(2) or mremap(2). The event details are

 available in the remove field.

 pagefault.address

 The address that triggered the page fault.

 pagefault.flags

 A bit mask of flags that describe the event. For

 UFFD_EVENT_PAGEFAULT, the following flag may appear:

 UFFD_PAGEFAULT_FLAG_WRITE

 If the address is in a range that was registered with the

 UFFDIO_REGISTER_MODE_MISSING flag (see ioctl_user?

 faultfd(2)) and this flag is set, this a write fault;

 otherwise it is a read fault.

 fork.ufd

 The file descriptor associated with the userfault object created

 for the child created by fork(2).

 remap.from

 The original address of the memory range that was remapped using

 mremap(2).

 remap.to

 The new address of the memory range that was remapped using

 mremap(2).

 remap.len

 The original length of the memory range that was remapped using

 mremap(2).

 remove.start

 The start address of the memory range that was freed using mad?

 vise(2) or unmapped

 remove.end

 The end address of the memory range that was freed using mad?

 vise(2) or unmapped

 A read(2) on a userfaultfd file descriptor can fail with the following

 errors: Page 6/14

 EINVAL The userfaultfd object has not yet been enabled using the UFF?

 DIO_API ioctl(2) operation

 If the O_NONBLOCK flag is enabled in the associated open file descrip?

 tion, the userfaultfd file descriptor can be monitored with poll(2),

 select(2), and epoll(7). When events are available, the file descrip?

 tor indicates as readable. If the O_NONBLOCK flag is not enabled, then

 poll(2) (always) indicates the file as having a POLLERR condition, and

 select(2) indicates the file descriptor as both readable and writable.

RETURN VALUE

 On success, userfaultfd() returns a new file descriptor that refers to

 the userfaultfd object. On error, -1 is returned, and errno is set ap?

 propriately.

ERRORS

 EINVAL An unsupported value was specified in flags.

 EMFILE The per-process limit on the number of open file descriptors has

 been reached

 ENFILE The system-wide limit on the total number of open files has been

 reached.

 ENOMEM Insufficient kernel memory was available.

 EPERM (since Linux 5.2)

 The caller is not privileged (does not have the CAP_SYS_PTRACE

 capability in the initial user namespace), and /proc/sys/vm/un?

 privileged_userfaultfd has the value 0.

VERSIONS

 The userfaultfd() system call first appeared in Linux 4.3.

 The support for hugetlbfs and shared memory areas and non-page-fault

 events was added in Linux 4.11

CONFORMING TO

 userfaultfd() is Linux-specific and should not be used in programs in?

 tended to be portable.

NOTES

 Glibc does not provide a wrapper for this system call; call it using

 syscall(2). Page 7/14

 The userfaultfd mechanism can be used as an alternative to traditional

 user-space paging techniques based on the use of the SIGSEGV signal and

 mmap(2). It can also be used to implement lazy restore for check?

 point/restore mechanisms, as well as post-copy migration to allow

 (nearly) uninterrupted execution when transferring virtual machines and

 Linux containers from one host to another.

BUGS

 If the UFFD_FEATURE_EVENT_FORK is enabled and a system call from the

 fork(2) family is interrupted by a signal or failed, a stale user?

 faultfd descriptor might be created. In this case, a spurious

 UFFD_EVENT_FORK will be delivered to the userfaultfd monitor.

EXAMPLES

 The program below demonstrates the use of the userfaultfd mechanism.

 The program creates two threads, one of which acts as the page-fault

 handler for the process, for the pages in a demand-page zero region

 created using mmap(2).

 The program takes one command-line argument, which is the number of

 pages that will be created in a mapping whose page faults will be han?

 dled via userfaultfd. After creating a userfaultfd object, the program

 then creates an anonymous private mapping of the specified size and

 registers the address range of that mapping using the UFFDIO_REGISTER

 ioctl(2) operation. The program then creates a second thread that will

 perform the task of handling page faults.

 The main thread then walks through the pages of the mapping fetching

 bytes from successive pages. Because the pages have not yet been ac?

 cessed, the first access of a byte in each page will trigger a page-

 fault event on the userfaultfd file descriptor.

 Each of the page-fault events is handled by the second thread, which

 sits in a loop processing input from the userfaultfd file descriptor.

 In each loop iteration, the second thread first calls poll(2) to check

 the state of the file descriptor, and then reads an event from the file

 descriptor. All such events should be UFFD_EVENT_PAGEFAULT events,

 which the thread handles by copying a page of data into the faulting Page 8/14

 region using the UFFDIO_COPY ioctl(2) operation.

 The following is an example of what we see when running the program:

 $./userfaultfd_demo 3

 Address returned by mmap() = 0x7fd30106c000

 fault_handler_thread():

 poll() returns: nready = 1; POLLIN = 1; POLLERR = 0

 UFFD_EVENT_PAGEFAULT event: flags = 0; address = 7fd30106c00f

 (uffdio_copy.copy returned 4096)

 Read address 0x7fd30106c00f in main(): A

 Read address 0x7fd30106c40f in main(): A

 Read address 0x7fd30106c80f in main(): A

 Read address 0x7fd30106cc0f in main(): A

 fault_handler_thread():

 poll() returns: nready = 1; POLLIN = 1; POLLERR = 0

 UFFD_EVENT_PAGEFAULT event: flags = 0; address = 7fd30106d00f

 (uffdio_copy.copy returned 4096)

 Read address 0x7fd30106d00f in main(): B

 Read address 0x7fd30106d40f in main(): B

 Read address 0x7fd30106d80f in main(): B

 Read address 0x7fd30106dc0f in main(): B

 fault_handler_thread():

 poll() returns: nready = 1; POLLIN = 1; POLLERR = 0

 UFFD_EVENT_PAGEFAULT event: flags = 0; address = 7fd30106e00f

 (uffdio_copy.copy returned 4096)

 Read address 0x7fd30106e00f in main(): C

 Read address 0x7fd30106e40f in main(): C

 Read address 0x7fd30106e80f in main(): C

 Read address 0x7fd30106ec0f in main(): C

 Program source

 /* userfaultfd_demo.c

 Licensed under the GNU General Public License version 2 or later.

 */

 #define _GNU_SOURCE Page 9/14

 #include <inttypes.h>

 #include <sys/types.h>

 #include <stdio.h>

 #include <linux/userfaultfd.h>

 #include <pthread.h>

 #include <errno.h>

 #include <unistd.h>

 #include <stdlib.h>

 #include <fcntl.h>

 #include <signal.h>

 #include <poll.h>

 #include <string.h>

 #include <sys/mman.h>

 #include <sys/syscall.h>

 #include <sys/ioctl.h>

 #include <poll.h>

 #define errExit(msg) do { perror(msg); exit(EXIT_FAILURE); \

 } while (0)

 static int page_size;

 static void *

 fault_handler_thread(void *arg)

 {

 static struct uffd_msg msg; /* Data read from userfaultfd */

 static int fault_cnt = 0; /* Number of faults so far handled */

 long uffd; /* userfaultfd file descriptor */

 static char *page = NULL;

 struct uffdio_copy uffdio_copy;

 ssize_t nread;

 uffd = (long) arg;

 /* Create a page that will be copied into the faulting region */

 if (page == NULL) {

 page = mmap(NULL, page_size, PROT_READ | PROT_WRITE,

 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); Page 10/14

 if (page == MAP_FAILED)

 errExit("mmap");

 }

 /* Loop, handling incoming events on the userfaultfd

 file descriptor */

 for (;;) {

 /* See what poll() tells us about the userfaultfd */

 struct pollfd pollfd;

 int nready;

 pollfd.fd = uffd;

 pollfd.events = POLLIN;

 nready = poll(&pollfd, 1, -1);

 if (nready == -1)

 errExit("poll");

 printf("\nfault_handler_thread():\n");

 printf(" poll() returns: nready = %d; "

 "POLLIN = %d; POLLERR = %d\n", nready,

 (pollfd.revents & POLLIN) != 0,

 (pollfd.revents & POLLERR) != 0);

 /* Read an event from the userfaultfd */

 nread = read(uffd, &msg, sizeof(msg));

 if (nread == 0) {

 printf("EOF on userfaultfd!\n");

 exit(EXIT_FAILURE);

 }

 if (nread == -1)

 errExit("read");

 /* We expect only one kind of event; verify that assumption */

 if (msg.event != UFFD_EVENT_PAGEFAULT) {

 fprintf(stderr, "Unexpected event on userfaultfd\n");

 exit(EXIT_FAILURE);

 }

 /* Display info about the page-fault event */ Page 11/14

 printf(" UFFD_EVENT_PAGEFAULT event: ");

 printf("flags = %"PRIx64"; ", msg.arg.pagefault.flags);

 printf("address = %"PRIx64"\n", msg.arg.pagefault.address);

 /* Copy the page pointed to by 'page' into the faulting

 region. Vary the contents that are copied in, so that it

 is more obvious that each fault is handled separately. */

 memset(page, 'A' + fault_cnt % 20, page_size);

 fault_cnt++;

 uffdio_copy.src = (unsigned long) page;

 /* We need to handle page faults in units of pages(!).

 So, round faulting address down to page boundary */

 uffdio_copy.dst = (unsigned long) msg.arg.pagefault.address &

 ~(page_size - 1);

 uffdio_copy.len = page_size;

 uffdio_copy.mode = 0;

 uffdio_copy.copy = 0;

 if (ioctl(uffd, UFFDIO_COPY, &uffdio_copy) == -1)

 errExit("ioctl-UFFDIO_COPY");

 printf(" (uffdio_copy.copy returned %"PRId64")\n",

 uffdio_copy.copy);

 }

 }

 int

 main(int argc, char *argv[])

 {

 long uffd; /* userfaultfd file descriptor */

 char *addr; /* Start of region handled by userfaultfd */

 uint64_t len; /* Length of region handled by userfaultfd */

 pthread_t thr; /* ID of thread that handles page faults */

 struct uffdio_api uffdio_api;

 struct uffdio_register uffdio_register;

 int s;

 if (argc != 2) { Page 12/14

 fprintf(stderr, "Usage: %s num-pages\n", argv[0]);

 exit(EXIT_FAILURE);

 }

 page_size = sysconf(_SC_PAGE_SIZE);

 len = strtoull(argv[1], NULL, 0) * page_size;

 /* Create and enable userfaultfd object */

 uffd = syscall(__NR_userfaultfd, O_CLOEXEC | O_NONBLOCK);

 if (uffd == -1)

 errExit("userfaultfd");

 uffdio_api.api = UFFD_API;

 uffdio_api.features = 0;

 if (ioctl(uffd, UFFDIO_API, &uffdio_api) == -1)

 errExit("ioctl-UFFDIO_API");

 /* Create a private anonymous mapping. The memory will be

 demand-zero paged--that is, not yet allocated. When we

 actually touch the memory, it will be allocated via

 the userfaultfd. */

 addr = mmap(NULL, len, PROT_READ | PROT_WRITE,

 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);

 if (addr == MAP_FAILED)

 errExit("mmap");

 printf("Address returned by mmap() = %p\n", addr);

 /* Register the memory range of the mapping we just created for

 handling by the userfaultfd object. In mode, we request to track

 missing pages (i.e., pages that have not yet been faulted in). */

 uffdio_register.range.start = (unsigned long) addr;

 uffdio_register.range.len = len;

 uffdio_register.mode = UFFDIO_REGISTER_MODE_MISSING;

 if (ioctl(uffd, UFFDIO_REGISTER, &uffdio_register) == -1)

 errExit("ioctl-UFFDIO_REGISTER");

 /* Create a thread that will process the userfaultfd events */

 s = pthread_create(&thr, NULL, fault_handler_thread, (void *) uffd);

 if (s != 0) { Page 13/14

 errno = s;

 errExit("pthread_create");

 }

 /* Main thread now touches memory in the mapping, touching

 locations 1024 bytes apart. This will trigger userfaultfd

 events for all pages in the region. */

 int l;

 l = 0xf; /* Ensure that faulting address is not on a page

 boundary, in order to test that we correctly

 handle that case in fault_handling_thread() */

 while (l < len) {

 char c = addr[l];

 printf("Read address %p in main(): ", addr + l);

 printf("%c\n", c);

 l += 1024;

 usleep(100000); /* Slow things down a little */

 }

 exit(EXIT_SUCCESS);

 }

SEE ALSO

 fcntl(2), ioctl(2), ioctl_userfaultfd(2), madvise(2), mmap(2)

 Documentation/admin-guide/mm/userfaultfd.rst in the Linux kernel source

 tree

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-11-01 USERFAULTFD(2)

Page 14/14

