
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'unshare.2' command

$ man unshare.2

UNSHARE(2) Linux Programmer's Manual UNSHARE(2)

NAME

 unshare - disassociate parts of the process execution context

SYNOPSIS

 #define _GNU_SOURCE

 #include <sched.h>

 int unshare(int flags);

DESCRIPTION

 unshare() allows a process (or thread) to disassociate parts of its ex?

 ecution context that are currently being shared with other processes

 (or threads). Part of the execution context, such as the mount name?

 space, is shared implicitly when a new process is created using fork(2)

 or vfork(2), while other parts, such as virtual memory, may be shared

 by explicit request when creating a process or thread using clone(2).

 The main use of unshare() is to allow a process to control its shared

 execution context without creating a new process.

 The flags argument is a bit mask that specifies which parts of the exe?

 cution context should be unshared. This argument is specified by ORing

 together zero or more of the following constants:

 CLONE_FILES

 Reverse the effect of the clone(2) CLONE_FILES flag. Unshare

 the file descriptor table, so that the calling process no longer

 shares its file descriptors with any other process. Page 1/8

 CLONE_FS

 Reverse the effect of the clone(2) CLONE_FS flag. Unshare

 filesystem attributes, so that the calling process no longer

 shares its root directory (chroot(2)), current directory

 (chdir(2)), or umask (umask(2)) attributes with any other

 process.

 CLONE_NEWCGROUP (since Linux 4.6)

 This flag has the same effect as the clone(2) CLONE_NEWCGROUP

 flag. Unshare the cgroup namespace. Use of CLONE_NEWCGROUP re?

 quires the CAP_SYS_ADMIN capability.

 CLONE_NEWIPC (since Linux 2.6.19)

 This flag has the same effect as the clone(2) CLONE_NEWIPC flag.

 Unshare the IPC namespace, so that the calling process has a

 private copy of the IPC namespace which is not shared with any

 other process. Specifying this flag automatically implies

 CLONE_SYSVSEM as well. Use of CLONE_NEWIPC requires the

 CAP_SYS_ADMIN capability.

 CLONE_NEWNET (since Linux 2.6.24)

 This flag has the same effect as the clone(2) CLONE_NEWNET flag.

 Unshare the network namespace, so that the calling process is

 moved into a new network namespace which is not shared with any

 previously existing process. Use of CLONE_NEWNET requires the

 CAP_SYS_ADMIN capability.

 CLONE_NEWNS

 This flag has the same effect as the clone(2) CLONE_NEWNS flag.

 Unshare the mount namespace, so that the calling process has a

 private copy of its namespace which is not shared with any other

 process. Specifying this flag automatically implies CLONE_FS as

 well. Use of CLONE_NEWNS requires the CAP_SYS_ADMIN capability.

 For further information, see mount_namespaces(7).

 CLONE_NEWPID (since Linux 3.8)

 This flag has the same effect as the clone(2) CLONE_NEWPID flag.

 Unshare the PID namespace, so that the calling process has a new Page 2/8

 PID namespace for its children which is not shared with any pre?

 viously existing process. The calling process is not moved into

 the new namespace. The first child created by the calling

 process will have the process ID 1 and will assume the role of

 init(1) in the new namespace. CLONE_NEWPID automatically im?

 plies CLONE_THREAD as well. Use of CLONE_NEWPID requires the

 CAP_SYS_ADMIN capability. For further information, see

 pid_namespaces(7).

 CLONE_NEWTIME (since Linux 5.6)

 Unshare the time namespace, so that the calling process has a

 new time namespace for its children which is not shared with any

 previously existing process. The calling process is not moved

 into the new namespace. Use of CLONE_NEWTIME requires the

 CAP_SYS_ADMIN capability. For further information, see

 time_namespaces(7).

 CLONE_NEWUSER (since Linux 3.8)

 This flag has the same effect as the clone(2) CLONE_NEWUSER

 flag. Unshare the user namespace, so that the calling process

 is moved into a new user namespace which is not shared with any

 previously existing process. As with the child process created

 by clone(2) with the CLONE_NEWUSER flag, the caller obtains a

 full set of capabilities in the new namespace.

 CLONE_NEWUSER requires that the calling process is not threaded;

 specifying CLONE_NEWUSER automatically implies CLONE_THREAD.

 Since Linux 3.9, CLONE_NEWUSER also automatically implies

 CLONE_FS. CLONE_NEWUSER requires that the user ID and group ID

 of the calling process are mapped to user IDs and group IDs in

 the user namespace of the calling process at the time of the

 call.

 For further information on user namespaces, see user_name?

 spaces(7).

 CLONE_NEWUTS (since Linux 2.6.19)

 This flag has the same effect as the clone(2) CLONE_NEWUTS flag. Page 3/8

 Unshare the UTS IPC namespace, so that the calling process has a

 private copy of the UTS namespace which is not shared with any

 other process. Use of CLONE_NEWUTS requires the CAP_SYS_ADMIN

 capability.

 CLONE_SYSVSEM (since Linux 2.6.26)

 This flag reverses the effect of the clone(2) CLONE_SYSVSEM

 flag. Unshare System V semaphore adjustment (semadj) values, so

 that the calling process has a new empty semadj list that is not

 shared with any other process. If this is the last process that

 has a reference to the process's current semadj list, then the

 adjustments in that list are applied to the corresponding sema?

 phores, as described in semop(2).

 In addition, CLONE_THREAD, CLONE_SIGHAND, and CLONE_VM can be specified

 in flags if the caller is single threaded (i.e., it is not sharing its

 address space with another process or thread). In this case, these

 flags have no effect. (Note also that specifying CLONE_THREAD automat?

 ically implies CLONE_VM, and specifying CLONE_VM automatically implies

 CLONE_SIGHAND.) If the process is multithreaded, then the use of these

 flags results in an error.

 If flags is specified as zero, then unshare() is a no-op; no changes

 are made to the calling process's execution context.

RETURN VALUE

 On success, zero returned. On failure, -1 is returned and errno is set

 to indicate the error.

ERRORS

 EINVAL An invalid bit was specified in flags.

 EINVAL CLONE_THREAD, CLONE_SIGHAND, or CLONE_VM was specified in flags,

 and the caller is multithreaded.

 EINVAL CLONE_NEWIPC was specified in flags, but the kernel was not con?

 figured with the CONFIG_SYSVIPC and CONFIG_IPC_NS options.

 EINVAL CLONE_NEWNET was specified in flags, but the kernel was not con?

 figured with the CONFIG_NET_NS option.

 EINVAL CLONE_NEWPID was specified in flags, but the kernel was not con? Page 4/8

 figured with the CONFIG_PID_NS option.

 EINVAL CLONE_NEWUSER was specified in flags, but the kernel was not

 configured with the CONFIG_USER_NS option.

 EINVAL CLONE_NEWUTS was specified in flags, but the kernel was not con?

 figured with the CONFIG_UTS_NS option.

 EINVAL CLONE_NEWPID was specified in flags, but the process has previ?

 ously called unshare() with the CLONE_NEWPID flag.

 ENOMEM Cannot allocate sufficient memory to copy parts of caller's con?

 text that need to be unshared.

 ENOSPC (since Linux 3.7)

 CLONE_NEWPID was specified in flags, but the limit on the nest?

 ing depth of PID namespaces would have been exceeded; see

 pid_namespaces(7).

 ENOSPC (since Linux 4.9; beforehand EUSERS)

 CLONE_NEWUSER was specified in flags, and the call would cause

 the limit on the number of nested user namespaces to be ex?

 ceeded. See user_namespaces(7).

 From Linux 3.11 to Linux 4.8, the error diagnosed in this case

 was EUSERS.

 ENOSPC (since Linux 4.9)

 One of the values in flags specified the creation of a new user

 namespace, but doing so would have caused the limit defined by

 the corresponding file in /proc/sys/user to be exceeded. For

 further details, see namespaces(7).

 EPERM The calling process did not have the required privileges for

 this operation.

 EPERM CLONE_NEWUSER was specified in flags, but either the effective

 user ID or the effective group ID of the caller does not have a

 mapping in the parent namespace (see user_namespaces(7)).

 EPERM (since Linux 3.9)

 CLONE_NEWUSER was specified in flags and the caller is in a ch?

 root environment (i.e., the caller's root directory does not

 match the root directory of the mount namespace in which it re? Page 5/8

 sides).

 EUSERS (from Linux 3.11 to Linux 4.8)

 CLONE_NEWUSER was specified in flags, and the limit on the num?

 ber of nested user namespaces would be exceeded. See the dis?

 cussion of the ENOSPC error above.

VERSIONS

 The unshare() system call was added to Linux in kernel 2.6.16.

CONFORMING TO

 The unshare() system call is Linux-specific.

NOTES

 Not all of the process attributes that can be shared when a new process

 is created using clone(2) can be unshared using unshare(). In particu?

 lar, as at kernel 3.8, unshare() does not implement flags that reverse

 the effects of CLONE_SIGHAND, CLONE_THREAD, or CLONE_VM. Such func?

 tionality may be added in the future, if required.

EXAMPLES

 The program below provides a simple implementation of the unshare(1)

 command, which unshares one or more namespaces and executes the command

 supplied in its command-line arguments. Here's an example of the use

 of this program, running a shell in a new mount namespace, and verify?

 ing that the original shell and the new shell are in separate mount

 namespaces:

 $ readlink /proc/$$/ns/mnt

 mnt:[4026531840]

 $ sudo ./unshare -m /bin/bash

 # readlink /proc/$$/ns/mnt

 mnt:[4026532325]

 The differing output of the two readlink(1) commands shows that the two

 shells are in different mount namespaces.

 Program source

 /* unshare.c

 A simple implementation of the unshare(1) command: unshare

 namespaces and execute a command. Page 6/8

 */

 #define _GNU_SOURCE

 #include <sched.h>

 #include <unistd.h>

 #include <stdlib.h>

 #include <stdio.h>

 /* A simple error-handling function: print an error message based

 on the value in 'errno' and terminate the calling process */

 #define errExit(msg) do { perror(msg); exit(EXIT_FAILURE); \

 } while (0)

 static void

 usage(char *pname)

 {

 fprintf(stderr, "Usage: %s [options] program [arg...]\n", pname);

 fprintf(stderr, "Options can be:\n");

 fprintf(stderr, " -C unshare cgroup namespace\n");

 fprintf(stderr, " -i unshare IPC namespace\n");

 fprintf(stderr, " -m unshare mount namespace\n");

 fprintf(stderr, " -n unshare network namespace\n");

 fprintf(stderr, " -p unshare PID namespace\n");

 fprintf(stderr, " -t unshare time namespace\n");

 fprintf(stderr, " -u unshare UTS namespace\n");

 fprintf(stderr, " -U unshare user namespace\n");

 exit(EXIT_FAILURE);

 }

 int

 main(int argc, char *argv[])

 {

 int flags, opt;

 flags = 0;

 while ((opt = getopt(argc, argv, "CimnptuU")) != -1) {

 switch (opt) {

 case 'C': flags |= CLONE_NEWCGROUP; break; Page 7/8

 case 'i': flags |= CLONE_NEWIPC; break;

 case 'm': flags |= CLONE_NEWNS; break;

 case 'n': flags |= CLONE_NEWNET; break;

 case 'p': flags |= CLONE_NEWPID; break;

 case 't': flags |= CLONE_NEWTIME; break;

 case 'u': flags |= CLONE_NEWUTS; break;

 case 'U': flags |= CLONE_NEWUSER; break;

 default: usage(argv[0]);

 }

 }

 if (optind >= argc)

 usage(argv[0]);

 if (unshare(flags) == -1)

 errExit("unshare");

 execvp(argv[optind], &argv[optind]);

 errExit("execvp");

 }

SEE ALSO

 unshare(1), clone(2), fork(2), kcmp(2), setns(2), vfork(2), name?

 spaces(7)

 Documentation/userspace-api/unshare.rst in the Linux kernel source tree

 (or Documentation/unshare.txt before Linux 4.12)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-04-11 UNSHARE(2)

Page 8/8

