
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'unshare.1' command

$ man unshare.1

UNSHARE(1) User Commands UNSHARE(1)

NAME

 unshare - run program in new namespaces

SYNOPSIS

 unshare [options] [program [arguments]]

DESCRIPTION

 The unshare command creates new namespaces (as specified by the

 command-line options described below) and then executes the specified

 program. If program is not given, then "${SHELL}" is run (default:

 /bin/sh).

 By default, a new namespace persists only as long as it has member

 processes. A new namespace can be made persistent even when it has no

 member processes by bind mounting /proc/pid/ns/type files to a

 filesystem path. A namespace that has been made persistent in this way

 can subsequently be entered with nsenter(1) even after the program

 terminates (except PID namespaces where a permanently running init

 process is required). Once a persistent namespace is no longer needed,

 it can be unpersisted by using umount(8) to remove the bind mount. See

 the EXAMPLES section for more details.

 unshare since util-linux version 2.36 uses

 /proc/[pid]/ns/pid_for_children and /proc/[pid]/ns/time_for_children

 files for persistent PID and TIME namespaces. This change requires

 Linux kernel 4.17 or newer. Page 1/9

 The following types of namespaces can be created with unshare:

 mount namespace

 Mounting and unmounting filesystems will not affect the rest of the

 system, except for filesystems which are explicitly marked as

 shared (with mount --make-shared; see /proc/self/mountinfo or

 findmnt -o+PROPAGATION for the shared flags). For further details,

 see mount_namespaces(7).

 unshare since util-linux version 2.27 automatically sets

 propagation to private in a new mount namespace to make sure that

 the new namespace is really unshared. It?s possible to disable this

 feature with option --propagation unchanged. Note that private is

 the kernel default.

 UTS namespace

 Setting hostname or domainname will not affect the rest of the

 system. For further details, see uts_namespaces(7).

 IPC namespace

 The process will have an independent namespace for POSIX message

 queues as well as System V message queues, semaphore sets and

 shared memory segments. For further details, see ipc_namespaces(7).

 network namespace

 The process will have independent IPv4 and IPv6 stacks, IP routing

 tables, firewall rules, the /proc/net and /sys/class/net directory

 trees, sockets, etc. For further details, see

 network_namespaces(7).

 PID namespace

 Children will have a distinct set of PID-to-process mappings from

 their parent. For further details, see pid_namespaces(7).

 cgroup namespace

 The process will have a virtualized view of /proc/self/cgroup, and

 new cgroup mounts will be rooted at the namespace cgroup root. For

 further details, see cgroup_namespaces(7).

 user namespace

 The process will have a distinct set of UIDs, GIDs and Page 2/9

 capabilities. For further details, see user_namespaces(7).

 time namespace

 The process can have a distinct view of CLOCK_MONOTONIC and/or

 CLOCK_BOOTTIME which can be changed using

 /proc/self/timens_offsets. For further details, see

 time_namespaces(7).

OPTIONS

 -i, --ipc[=file]

 Unshare the IPC namespace. If file is specified, then a persistent

 namespace is created by a bind mount.

 -m, --mount[=file]

 Unshare the mount namespace. If file is specified, then a

 persistent namespace is created by a bind mount. Note that file

 must be located on a mount whose propagation type is not shared (or

 an error results). Use the command findmnt -o+PROPAGATION when not

 sure about the current setting. See also the examples below.

 -n, --net[=file]

 Unshare the network namespace. If file is specified, then a

 persistent namespace is created by a bind mount.

 -p, --pid[=file]

 Unshare the PID namespace. If file is specified, then a persistent

 namespace is created by a bind mount. (Creation of a persistent PID

 namespace will fail if the --fork option is not also specified.)

 See also the --fork and --mount-proc options.

 -u, --uts[=file]

 Unshare the UTS namespace. If file is specified, then a persistent

 namespace is created by a bind mount.

 -U, --user[=file]

 Unshare the user namespace. If file is specified, then a persistent

 namespace is created by a bind mount.

 -C, --cgroup[=file]

 Unshare the cgroup namespace. If file is specified, then persistent

 namespace is created by bind mount. Page 3/9

 -T, --time[=file]

 Unshare the time namespace. If file is specified, then a persistent

 namespace is created by a bind mount. The --monotonic and

 --boottime options can be used to specify the corresponding offset

 in the time namespace.

 -f, --fork

 Fork the specified program as a child process of unshare rather

 than running it directly. This is useful when creating a new PID

 namespace. Note that when unshare is waiting for the child process,

 then it ignores SIGINT and SIGTERM and does not forward any signals

 to the child. It is necessary to send signals to the child process.

 --keep-caps

 When the --user option is given, ensure that capabilities granted

 in the user namespace are preserved in the child process.

 --kill-child[=signame]

 When unshare terminates, have signame be sent to the forked child

 process. Combined with --pid this allows for an easy and reliable

 killing of the entire process tree below unshare. If not given,

 signame defaults to SIGKILL. This option implies --fork.

 --mount-proc[=mountpoint]

 Just before running the program, mount the proc filesystem at

 mountpoint (default is /proc). This is useful when creating a new

 PID namespace. It also implies creating a new mount namespace since

 the /proc mount would otherwise mess up existing programs on the

 system. The new proc filesystem is explicitly mounted as private

 (with MS_PRIVATE|MS_REC).

 --map-user=uid|name

 Run the program only after the current effective user ID has been

 mapped to uid. If this option is specified multiple times, the last

 occurrence takes precedence. This option implies --user.

 --map-group=gid|name

 Run the program only after the current effective group ID has been

 mapped to gid. If this option is specified multiple times, the last Page 4/9

 occurrence takes precedence. This option implies --setgroups=deny

 and --user.

 -r, --map-root-user

 Run the program only after the current effective user and group IDs

 have been mapped to the superuser UID and GID in the newly created

 user namespace. This makes it possible to conveniently gain

 capabilities needed to manage various aspects of the newly created

 namespaces (such as configuring interfaces in the network namespace

 or mounting filesystems in the mount namespace) even when run

 unprivileged. As a mere convenience feature, it does not support

 more sophisticated use cases, such as mapping multiple ranges of

 UIDs and GIDs. This option implies --setgroups=deny and --user.

 This option is equivalent to --map-user=0 --map-group=0.

 -c, --map-current-user

 Run the program only after the current effective user and group IDs

 have been mapped to the same UID and GID in the newly created user

 namespace. This option implies --setgroups=deny and --user. This

 option is equivalent to --map-user=$(id -ru) --map-group=$(id -rg).

 --propagation private|shared|slave|unchanged

 Recursively set the mount propagation flag in the new mount

 namespace. The default is to set the propagation to private. It is

 possible to disable this feature with the argument unchanged. The

 option is silently ignored when the mount namespace (--mount) is

 not requested.

 --setgroups allow|deny

 Allow or deny the setgroups(2) system call in a user namespace.

 To be able to call setgroups(2), the calling process must at least

 have CAP_SETGID. But since Linux 3.19 a further restriction

 applies: the kernel gives permission to call setgroups(2) only

 after the GID map (/proc/pid*/gid_map*) has been set. The GID map

 is writable by root when setgroups(2) is enabled (i.e., allow, the

 default), and the GID map becomes writable by unprivileged

 processes when setgroups(2) is permanently disabled (with deny). Page 5/9

 -R, --root=dir

 run the command with root directory set to dir.

 -w, --wd=dir

 change working directory to dir.

 -S, --setuid uid

 Set the user ID which will be used in the entered namespace.

 -G, --setgid gid

 Set the group ID which will be used in the entered namespace and

 drop supplementary groups.

 --monotonic offset

 Set the offset of CLOCK_MONOTONIC which will be used in the entered

 time namespace. This option requires unsharing a time namespace

 with --time.

 --boottime offset

 Set the offset of CLOCK_BOOTTIME which will be used in the entered

 time namespace. This option requires unsharing a time namespace

 with --time.

 -V, --version

 Display version information and exit.

 -h, --help

 Display help text and exit.

NOTES

 The proc and sysfs filesystems mounting as root in a user namespace

 have to be restricted so that a less privileged user can not get more

 access to sensitive files that a more privileged user made unavailable.

 In short the rule for proc and sysfs is as close to a bind mount as

 possible.

EXAMPLES

 The following command creates a PID namespace, using --fork to ensure

 that the executed command is performed in a child process that (being

 the first process in the namespace) has PID 1. The --mount-proc option

 ensures that a new mount namespace is also simultaneously created and

 that a new proc(5) filesystem is mounted that contains information Page 6/9

 corresponding to the new PID namespace. When the readlink command

 terminates, the new namespaces are automatically torn down.

 # unshare --fork --pid --mount-proc readlink /proc/self

 1

 As an unprivileged user, create a new user namespace where the user?s

 credentials are mapped to the root IDs inside the namespace:

 $ id -u; id -g

 1000

 1000

 $ unshare --user --map-root-user \

 sh -c ''whoami; cat /proc/self/uid_map /proc/self/gid_map''

 root

 0 1000 1

 0 1000 1

 The first of the following commands creates a new persistent UTS

 namespace and modifies the hostname as seen in that namespace. The

 namespace is then entered with nsenter(1) in order to display the

 modified hostname; this step demonstrates that the UTS namespace

 continues to exist even though the namespace had no member processes

 after the unshare command terminated. The namespace is then destroyed

 by removing the bind mount.

 # touch /root/uts-ns

 # unshare --uts=/root/uts-ns hostname FOO

 # nsenter --uts=/root/uts-ns hostname

 FOO

 # umount /root/uts-ns

 The following commands establish a persistent mount namespace

 referenced by the bind mount /root/namespaces/mnt. In order to ensure

 that the creation of that bind mount succeeds, the parent directory

 (/root/namespaces) is made a bind mount whose propagation type is not

 shared.

 # mount --bind /root/namespaces /root/namespaces

 # mount --make-private /root/namespaces Page 7/9

 # touch /root/namespaces/mnt

 # unshare --mount=/root/namespaces/mnt

 The following commands demonstrate the use of the --kill-child option

 when creating a PID namespace, in order to ensure that when unshare is

 killed, all of the processes within the PID namespace are killed.

 # set +m # Don't print job status messages

 # unshare --pid --fork --mount-proc --kill-child -- \

 bash --norc -c ''(sleep 555 &) && (ps a &) && sleep 999'' &

 [1] 53456

 # PID TTY STAT TIME COMMAND

 1 pts/3 S+ 0:00 sleep 999

 3 pts/3 S+ 0:00 sleep 555

 5 pts/3 R+ 0:00 ps a

 # ps h -o 'comm' $! # Show that background job is unshare(1)

 unshare

 # kill $! # Kill unshare(1)

 # pidof sleep

 The pidof(1) command prints no output, because the sleep processes have

 been killed. More precisely, when the sleep process that has PID 1 in

 the namespace (i.e., the namespace?s init process) was killed, this

 caused all other processes in the namespace to be killed. By contrast,

 a similar series of commands where the --kill-child option is not used

 shows that when unshare terminates, the processes in the PID namespace

 are not killed:

 # unshare --pid --fork --mount-proc -- \

 bash --norc -c ''(sleep 555 &) && (ps a &) && sleep 999'' &

 [1] 53479

 # PID TTY STAT TIME COMMAND

 1 pts/3 S+ 0:00 sleep 999

 3 pts/3 S+ 0:00 sleep 555

 5 pts/3 R+ 0:00 ps a

 # kill $!

 # pidof sleep Page 8/9

 53482 53480

 The following example demonstrates the creation of a time namespace

 where the boottime clock is set to a point several years in the past:

 # uptime -p # Show uptime in initial time namespace

 up 21 hours, 30 minutes

 # unshare --time --fork --boottime 300000000 uptime -p

 up 9 years, 28 weeks, 1 day, 2 hours, 50 minutes

AUTHORS

 Mikhail Gusarov <dottedmag@dottedmag.net>, Karel Zak <kzak@redhat.com>

SEE ALSO

 clone(2), unshare(2), namespaces(7), mount(8)

REPORTING BUGS

 For bug reports, use the issue tracker at

 https://github.com/karelzak/util-linux/issues.

AVAILABILITY

 The unshare command is part of the util-linux package which can be

 downloaded from Linux Kernel Archive

 <https://www.kernel.org/pub/linux/utils/util-linux/>.

util-linux 2.37.4 2022-02-14 UNSHARE(1)

Page 9/9

