
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'umount2.2' command

$ man umount2.2

UMOUNT(2) Linux Programmer's Manual UMOUNT(2)

NAME

 umount, umount2 - unmount filesystem

SYNOPSIS

 #include <sys/mount.h>

 int umount(const char *target);

 int umount2(const char *target, int flags);

DESCRIPTION

 umount() and umount2() remove the attachment of the (topmost) filesys?

 tem mounted on target.

 Appropriate privilege (Linux: the CAP_SYS_ADMIN capability) is required

 to unmount filesystems.

 Linux 2.1.116 added the umount2() system call, which, like umount(),

 unmounts a target, but allows additional flags controlling the behavior

 of the operation:

 MNT_FORCE (since Linux 2.1.116)

 Ask the filesystem to abort pending requests before attempting

 the unmount. This may allow the unmount to complete without

 waiting for an inaccessible server, but could cause data loss.

 If, after aborting requests, some processes still have active

 references to the filesystem, the unmount will still fail. As

 at Linux 4.12, MNT_FORCE is supported only on the following

 filesystems: 9p (since Linux 2.6.16), ceph (since Linux 2.6.34), Page 1/4

 cifs (since Linux 2.6.12), fuse (since Linux 2.6.16), lustre

 (since Linux 3.11), and NFS (since Linux 2.1.116).

 MNT_DETACH (since Linux 2.4.11)

 Perform a lazy unmount: make the mount point unavailable for new

 accesses, immediately disconnect the filesystem and all filesys?

 tems mounted below it from each other and from the mount table,

 and actually perform the unmount when the mount point ceases to

 be busy.

 MNT_EXPIRE (since Linux 2.6.8)

 Mark the mount point as expired. If a mount point is not cur?

 rently in use, then an initial call to umount2() with this flag

 fails with the error EAGAIN, but marks the mount point as ex?

 pired. The mount point remains expired as long as it isn't ac?

 cessed by any process. A second umount2() call specifying

 MNT_EXPIRE unmounts an expired mount point. This flag cannot be

 specified with either MNT_FORCE or MNT_DETACH.

 UMOUNT_NOFOLLOW (since Linux 2.6.34)

 Don't dereference target if it is a symbolic link. This flag

 allows security problems to be avoided in set-user-ID-root pro?

 grams that allow unprivileged users to unmount filesystems.

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and errno is

 set appropriately.

ERRORS

 The error values given below result from filesystem type independent

 errors. Each filesystem type may have its own special errors and its

 own special behavior. See the Linux kernel source code for details.

 EAGAIN A call to umount2() specifying MNT_EXPIRE successfully marked an

 unbusy filesystem as expired.

 EBUSY target could not be unmounted because it is busy.

 EFAULT target points outside the user address space.

 EINVAL target is not a mount point.

 EINVAL umount2() was called with MNT_EXPIRE and either MNT_DETACH or Page 2/4

 MNT_FORCE.

 EINVAL (since Linux 2.6.34)

 umount2() was called with an invalid flag value in flags.

 ENAMETOOLONG

 A pathname was longer than MAXPATHLEN.

 ENOENT A pathname was empty or had a nonexistent component.

 ENOMEM The kernel could not allocate a free page to copy filenames or

 data into.

 EPERM The caller does not have the required privileges.

VERSIONS

 MNT_DETACH and MNT_EXPIRE are available in glibc since version 2.11.

CONFORMING TO

 These functions are Linux-specific and should not be used in programs

 intended to be portable.

NOTES

 umount() and shared mount points

 Shared mount points cause any mount activity on a mount point, includ?

 ing umount() operations, to be forwarded to every shared mount point in

 the peer group and every slave mount of that peer group. This means

 that umount() of any peer in a set of shared mounts will cause all of

 its peers to be unmounted and all of their slaves to be unmounted as

 well.

 This propagation of unmount activity can be particularly surprising on

 systems where every mount point is shared by default. On such systems,

 recursively bind mounting the root directory of the filesystem onto a

 subdirectory and then later unmounting that subdirectory with MNT_DE?

 TACH will cause every mount in the mount namespace to be lazily un?

 mounted.

 To ensure umount() does not propagate in this fashion, the mount point

 may be remounted using a mount(2) call with a mount_flags argument that

 includes both MS_REC and MS_PRIVATE prior to umount() being called.

 Historical details

 The original umount() function was called as umount(device) and would Page 3/4

 return ENOTBLK when called with something other than a block device.

 In Linux 0.98p4, a call umount(dir) was added, in order to support

 anonymous devices. In Linux 2.3.99-pre7, the call umount(device) was

 removed, leaving only umount(dir) (since now devices can be mounted in

 more than one place, so specifying the device does not suffice).

SEE ALSO

 mount(2), mount_namespaces(7), path_resolution(7), mount(8), umount(8)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-06-09 UMOUNT(2)

Page 4/4

