
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'udp.7' command

$ man udp.7

UDP(7) Linux Programmer's Manual UDP(7)

NAME

 udp - User Datagram Protocol for IPv4

SYNOPSIS

 #include <sys/socket.h>

 #include <netinet/in.h>

 #include <netinet/udp.h>

 udp_socket = socket(AF_INET, SOCK_DGRAM, 0);

DESCRIPTION

 This is an implementation of the User Datagram Protocol described in

 RFC 768. It implements a connectionless, unreliable datagram packet

 service. Packets may be reordered or duplicated before they arrive.

 UDP generates and checks checksums to catch transmission errors.

 When a UDP socket is created, its local and remote addresses are un?

 specified. Datagrams can be sent immediately using sendto(2) or

 sendmsg(2) with a valid destination address as an argument. When con?

 nect(2) is called on the socket, the default destination address is set

 and datagrams can now be sent using send(2) or write(2) without speci?

 fying a destination address. It is still possible to send to other

 destinations by passing an address to sendto(2) or sendmsg(2). In or?

 der to receive packets, the socket can be bound to a local address

 first by using bind(2). Otherwise, the socket layer will automatically

 assign a free local port out of the range defined by Page 1/5

 /proc/sys/net/ipv4/ip_local_port_range and bind the socket to IN?

 ADDR_ANY.

 All receive operations return only one packet. When the packet is

 smaller than the passed buffer, only that much data is returned; when

 it is bigger, the packet is truncated and the MSG_TRUNC flag is set.

 MSG_WAITALL is not supported.

 IP options may be sent or received using the socket options described

 in ip(7). They are processed by the kernel only when the appropriate

 /proc parameter is enabled (but still passed to the user even when it

 is turned off). See ip(7).

 When the MSG_DONTROUTE flag is set on sending, the destination address

 must refer to a local interface address and the packet is sent only to

 that interface.

 By default, Linux UDP does path MTU (Maximum Transmission Unit) discov?

 ery. This means the kernel will keep track of the MTU to a specific

 target IP address and return EMSGSIZE when a UDP packet write exceeds

 it. When this happens, the application should decrease the packet

 size. Path MTU discovery can be also turned off using the IP_MTU_DIS?

 COVER socket option or the /proc/sys/net/ipv4/ip_no_pmtu_disc file; see

 ip(7) for details. When turned off, UDP will fragment outgoing UDP

 packets that exceed the interface MTU. However, disabling it is not

 recommended for performance and reliability reasons.

 Address format

 UDP uses the IPv4 sockaddr_in address format described in ip(7).

 Error handling

 All fatal errors will be passed to the user as an error return even

 when the socket is not connected. This includes asynchronous errors

 received from the network. You may get an error for an earlier packet

 that was sent on the same socket. This behavior differs from many

 other BSD socket implementations which don't pass any errors unless the

 socket is connected. Linux's behavior is mandated by RFC 1122.

 For compatibility with legacy code, in Linux 2.0 and 2.2 it was possi?

 ble to set the SO_BSDCOMPAT SOL_SOCKET option to receive remote errors Page 2/5

 only when the socket has been connected (except for EPROTO and EMSG?

 SIZE). Locally generated errors are always passed. Support for this

 socket option was removed in later kernels; see socket(7) for further

 information.

 When the IP_RECVERR option is enabled, all errors are stored in the

 socket error queue, and can be received by recvmsg(2) with the MSG_ER?

 RQUEUE flag set.

 /proc interfaces

 System-wide UDP parameter settings can be accessed by files in the di?

 rectory /proc/sys/net/ipv4/.

 udp_mem (since Linux 2.6.25)

 This is a vector of three integers governing the number of pages

 allowed for queueing by all UDP sockets.

 min Below this number of pages, UDP is not bothered about its

 memory appetite. When the amount of memory allocated by

 UDP exceeds this number, UDP starts to moderate memory

 usage.

 pressure

 This value was introduced to follow the format of tcp_mem

 (see tcp(7)).

 max Number of pages allowed for queueing by all UDP sockets.

 Defaults values for these three items are calculated at boot

 time from the amount of available memory.

 udp_rmem_min (integer; default value: PAGE_SIZE; since Linux 2.6.25)

 Minimal size, in bytes, of receive buffers used by UDP sockets

 in moderation. Each UDP socket is able to use the size for re?

 ceiving data, even if total pages of UDP sockets exceed udp_mem

 pressure.

 udp_wmem_min (integer; default value: PAGE_SIZE; since Linux 2.6.25)

 Minimal size, in bytes, of send buffer used by UDP sockets in

 moderation. Each UDP socket is able to use the size for sending

 data, even if total pages of UDP sockets exceed udp_mem pres?

 sure. Page 3/5

 Socket options

 To set or get a UDP socket option, call getsockopt(2) to read or set?

 sockopt(2) to write the option with the option level argument set to

 IPPROTO_UDP. Unless otherwise noted, optval is a pointer to an int.

 Following is a list of UDP-specific socket options. For details of

 some other socket options that are also applicable for UDP sockets, see

 socket(7).

 UDP_CORK (since Linux 2.5.44)

 If this option is enabled, then all data output on this socket

 is accumulated into a single datagram that is transmitted when

 the option is disabled. This option should not be used in code

 intended to be portable.

 Ioctls

 These ioctls can be accessed using ioctl(2). The correct syntax is:

 int value;

 error = ioctl(udp_socket, ioctl_type, &value);

 FIONREAD (SIOCINQ)

 Gets a pointer to an integer as argument. Returns the size of

 the next pending datagram in the integer in bytes, or 0 when no

 datagram is pending. Warning: Using FIONREAD, it is impossible

 to distinguish the case where no datagram is pending from the

 case where the next pending datagram contains zero bytes of

 data. It is safer to use select(2), poll(2), or epoll(7) to

 distinguish these cases.

 TIOCOUTQ (SIOCOUTQ)

 Returns the number of data bytes in the local send queue. Sup?

 ported only with Linux 2.4 and above.

 In addition, all ioctls documented in ip(7) and socket(7) are sup?

 ported.

ERRORS

 All errors documented for socket(7) or ip(7) may be returned by a send

 or receive on a UDP socket.

 ECONNREFUSED Page 4/5

 No receiver was associated with the destination address. This

 might be caused by a previous packet sent over the socket.

VERSIONS

 IP_RECVERR is a new feature in Linux 2.2.

SEE ALSO

 ip(7), raw(7), socket(7), udplite(7)

 The kernel source file Documentation/networking/ip-sysctl.txt.

 RFC 768 for the User Datagram Protocol.

 RFC 1122 for the host requirements.

 RFC 1191 for a description of path MTU discovery.

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-04-11 UDP(7)

Page 5/5

