
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'tpm2_ecephemeral.1' command

$ man tpm2_ecephemeral.1

tpm2_ecephemeral(1) General Commands Manual tpm2_ecephemeral(1)

NAME

 tpm2_ecephemeral(1) - Creates an ephemeral key for use in a two-phase

 key exchange protocol.

SYNOPSIS

 tpm2_ecephemeral [OPTIONS]

DESCRIPTION

 tpm2_ecephemeral(1) - Creates an ephemeral key for use in a two-phase

 key exchange protocol.

OPTIONS

 ? ARGUMENT=ALGORITHM:

 Specify the ECC curve. Example ecc521.

 ? -u, --public=FILE

 Specify the file path to save the ephemeral public point Q ? [r]G.

 ? -t, --counter=FILE

 Specify file path to save the least-significant 16 bits of commit

 count.

 References

Algorithm Specifiers

 Options that take algorithms support ?nice-names?.

 There are two major algorithm specification string classes, simple and

 complex. Only certain algorithms will be accepted by the TPM, based on

 usage and conditions. Page 1/8

 Simple specifiers

 These are strings with no additional specification data. When creating

 objects, non-specified portions of an object are assumed to defaults.

 You can find the list of known ?Simple Specifiers Below?.

 Asymmetric

 ? rsa

 ? ecc

 Symmetric

 ? aes

 ? camellia

 Hashing Algorithms

 ? sha1

 ? sha256

 ? sha384

 ? sha512

 ? sm3_256

 ? sha3_256

 ? sha3_384

 ? sha3_512

 Keyed Hash

 ? hmac

 ? xor

 Signing Schemes

 ? rsassa

 ? rsapss

 ? ecdsa

 ? ecdaa

 ? ecschnorr

 Asymmetric Encryption Schemes

 ? oaep

 ? rsaes

 ? ecdh

 Modes Page 2/8

 ? ctr

 ? ofb

 ? cbc

 ? cfb

 ? ecb

 Misc

 ? null

 Complex Specifiers

 Objects, when specified for creation by the TPM, have numerous algo?

 rithms to populate in the public data. Things like type, scheme and

 asymmetric details, key size, etc. Below is the general format for

 specifying this data: <type>:<scheme>:<symmetric-details>

 Type Specifiers

 This portion of the complex algorithm specifier is required. The re?

 maining scheme and symmetric details will default based on the type

 specified and the type of the object being created.

 ? aes - Default AES: aes128

 ? aes128<mode> - 128 bit AES with optional mode (ctr|ofb|cbc|cfb|ecb).

 If mode is not specified, defaults to null.

 ? aes192<mode> - Same as aes128<mode>, except for a 192 bit key size.

 ? aes256<mode> - Same as aes128<mode>, except for a 256 bit key size.

 ? ecc - Elliptical Curve, defaults to ecc256.

 ? ecc192 - 192 bit ECC

 ? ecc224 - 224 bit ECC

 ? ecc256 - 256 bit ECC

 ? ecc384 - 384 bit ECC

 ? ecc521 - 521 bit ECC

 ? rsa - Default RSA: rsa2048

 ? rsa1024 - RSA with 1024 bit keysize.

 ? rsa2048 - RSA with 2048 bit keysize.

 ? rsa4096 - RSA with 4096 bit keysize.

 Scheme Specifiers

 Next, is an optional field, it can be skipped. Page 3/8

 Schemes are usually Signing Schemes or Asymmetric Encryption Schemes.

 Most signing schemes take a hash algorithm directly following the sign?

 ing scheme. If the hash algorithm is missing, it defaults to sha256.

 Some take no arguments, and some take multiple arguments.

 Hash Optional Scheme Specifiers

 These scheme specifiers are followed by a dash and a valid hash algo?

 rithm, For example: oaep-sha256.

 ? oaep

 ? ecdh

 ? rsassa

 ? rsapss

 ? ecdsa

 ? ecschnorr

 Multiple Option Scheme Specifiers

 This scheme specifier is followed by a count (max size UINT16) then

 followed by a dash(-) and a valid hash algorithm. * ecdaa For example,

 ecdaa4-sha256. If no count is specified, it defaults to 4.

 No Option Scheme Specifiers

 This scheme specifier takes NO arguments. * rsaes

 Symmetric Details Specifiers

 This field is optional, and defaults based on the type of object being

 created and it?s attributes. Generally, any valid Symmetric specifier

 from the Type Specifiers list should work. If not specified, an asym?

 metric objects symmetric details defaults to aes128cfb.

 Examples

 Create an rsa2048 key with an rsaes asymmetric encryption scheme

 tpm2_create -C parent.ctx -G rsa2048:rsaes -u key.pub -r key.priv

 Create an ecc256 key with an ecdaa signing scheme with a count of 4 and

 sha384 hash

 /tpm2_create -C parent.ctx -G ecc256:ecdaa4-sha384 -u key.pub -r

 key.priv cryptographic algorithms ALGORITHM.

COMMON OPTIONS

 This collection of options are common to many programs and provide in? Page 4/8

 formation that many users may expect.

 ? -h, --help=[man|no-man]: Display the tools manpage. By default, it

 attempts to invoke the manpager for the tool, however, on failure

 will output a short tool summary. This is the same behavior if the

 ?man? option argument is specified, however if explicit ?man? is re?

 quested, the tool will provide errors from man on stderr. If the

 ?no-man? option if specified, or the manpager fails, the short op?

 tions will be output to stdout.

 To successfully use the manpages feature requires the manpages to be

 installed or on MANPATH, See man(1) for more details.

 ? -v, --version: Display version information for this tool, supported

 tctis and exit.

 ? -V, --verbose: Increase the information that the tool prints to the

 console during its execution. When using this option the file and

 line number are printed.

 ? -Q, --quiet: Silence normal tool output to stdout.

 ? -Z, --enable-errata: Enable the application of errata fixups. Useful

 if an errata fixup needs to be applied to commands sent to the TPM.

 Defining the environment TPM2TOOLS_ENABLE_ERRATA is equivalent. in?

 formation many users may expect.

TCTI Configuration

 The TCTI or ?Transmission Interface? is the communication mechanism

 with the TPM. TCTIs can be changed for communication with TPMs across

 different mediums.

 To control the TCTI, the tools respect:

 1. The command line option -T or --tcti

 2. The environment variable: TPM2TOOLS_TCTI.

 Note: The command line option always overrides the environment vari?

 able.

 The current known TCTIs are:

 ? tabrmd - The resource manager, called tabrmd

 (https://github.com/tpm2-software/tpm2-abrmd). Note that tabrmd and

 abrmd as a tcti name are synonymous. Page 5/8

 ? mssim - Typically used for communicating to the TPM software simula?

 tor.

 ? device - Used when talking directly to a TPM device file.

 ? none - Do not initalize a connection with the TPM. Some tools allow

 for off-tpm options and thus support not using a TCTI. Tools that do

 not support it will error when attempted to be used without a TCTI

 connection. Does not support ANY options and MUST BE presented as

 the exact text of ?none?.

 The arguments to either the command line option or the environment

 variable are in the form:

 <tcti-name>:<tcti-option-config>

 Specifying an empty string for either the <tcti-name> or <tcti-op?

 tion-config> results in the default being used for that portion respec?

 tively.

 TCTI Defaults

 When a TCTI is not specified, the default TCTI is searched for using

 dlopen(3) semantics. The tools will search for tabrmd, device and

 mssim TCTIs IN THAT ORDER and USE THE FIRST ONE FOUND. You can query

 what TCTI will be chosen as the default by using the -v option to print

 the version information. The ?default-tcti? key-value pair will indi?

 cate which of the aforementioned TCTIs is the default.

 Custom TCTIs

 Any TCTI that implements the dynamic TCTI interface can be loaded. The

 tools internally use dlopen(3), and the raw tcti-name value is used for

 the lookup. Thus, this could be a path to the shared library, or a li?

 brary name as understood by dlopen(3) semantics.

TCTI OPTIONS

 This collection of options are used to configure the various known TCTI

 modules available:

 ? device: For the device TCTI, the TPM character device file for use by

 the device TCTI can be specified. The default is /dev/tpm0.

 Example: -T device:/dev/tpm0 or export TPM2TOOLS_TCTI=?de?

 vice:/dev/tpm0? Page 6/8

 ? mssim: For the mssim TCTI, the domain name or IP address and port

 number used by the simulator can be specified. The default are

 127.0.0.1 and 2321.

 Example: -T mssim:host=localhost,port=2321 or export TPM2TOOLS_TC?

 TI=?mssim:host=localhost,port=2321?

 ? abrmd: For the abrmd TCTI, the configuration string format is a se?

 ries of simple key value pairs separated by a `,' character. Each

 key and value string are separated by a `=' character.

 ? TCTI abrmd supports two keys:

 1. `bus_name' : The name of the tabrmd service on the bus (a

 string).

 2. `bus_type' : The type of the dbus instance (a string) limited to

 `session' and `system'.

 Specify the tabrmd tcti name and a config string of bus_name=com.ex?

 ample.FooBar:

 \--tcti=tabrmd:bus_name=com.example.FooBar

 Specify the default (abrmd) tcti and a config string of bus_type=ses?

 sion:

 \--tcti:bus_type=session

 NOTE: abrmd and tabrmd are synonymous. the various known TCTI mod?

 ules.

EXAMPLES

 tpm2_ecephemeral -u ecc.q -t ecc.ctr ecc256

Returns

 Tools can return any of the following codes:

 ? 0 - Success.

 ? 1 - General non-specific error.

 ? 2 - Options handling error.

 ? 3 - Authentication error.

 ? 4 - TCTI related error.

 ? 5 - Non supported scheme. Applicable to tpm2_testparams.

BUGS

 Github Issues (https://github.com/tpm2-software/tpm2-tools/issues) Page 7/8

HELP

 See the Mailing List (https://lists.01.org/mailman/listinfo/tpm2)

tpm2-tools tpm2_ecephemeral(1)

Page 8/8

