
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'tcp.7' command

$ man tcp.7

TCP(7) Linux Programmer's Manual TCP(7)

NAME

 tcp - TCP protocol

SYNOPSIS

 #include <sys/socket.h>

 #include <netinet/in.h>

 #include <netinet/tcp.h>

 tcp_socket = socket(AF_INET, SOCK_STREAM, 0);

DESCRIPTION

 This is an implementation of the TCP protocol defined in RFC 793,

 RFC 1122 and RFC 2001 with the NewReno and SACK extensions. It pro?

 vides a reliable, stream-oriented, full-duplex connection between two

 sockets on top of ip(7), for both v4 and v6 versions. TCP guarantees

 that the data arrives in order and retransmits lost packets. It gener?

 ates and checks a per-packet checksum to catch transmission errors.

 TCP does not preserve record boundaries.

 A newly created TCP socket has no remote or local address and is not

 fully specified. To create an outgoing TCP connection use connect(2)

 to establish a connection to another TCP socket. To receive new incom?

 ing connections, first bind(2) the socket to a local address and port

 and then call listen(2) to put the socket into the listening state.

 After that a new socket for each incoming connection can be accepted

 using accept(2). A socket which has had accept(2) or connect(2) suc? Page 1/23

 cessfully called on it is fully specified and may transmit data. Data

 cannot be transmitted on listening or not yet connected sockets.

 Linux supports RFC 1323 TCP high performance extensions. These include

 Protection Against Wrapped Sequence Numbers (PAWS), Window Scaling and

 Timestamps. Window scaling allows the use of large (> 64 kB) TCP win?

 dows in order to support links with high latency or bandwidth. To make

 use of them, the send and receive buffer sizes must be increased. They

 can be set globally with the /proc/sys/net/ipv4/tcp_wmem and

 /proc/sys/net/ipv4/tcp_rmem files, or on individual sockets by using

 the SO_SNDBUF and SO_RCVBUF socket options with the setsockopt(2) call.

 The maximum sizes for socket buffers declared via the SO_SNDBUF and

 SO_RCVBUF mechanisms are limited by the values in the

 /proc/sys/net/core/rmem_max and /proc/sys/net/core/wmem_max files.

 Note that TCP actually allocates twice the size of the buffer requested

 in the setsockopt(2) call, and so a succeeding getsockopt(2) call will

 not return the same size of buffer as requested in the setsockopt(2)

 call. TCP uses the extra space for administrative purposes and inter?

 nal kernel structures, and the /proc file values reflect the larger

 sizes compared to the actual TCP windows. On individual connections,

 the socket buffer size must be set prior to the listen(2) or connect(2)

 calls in order to have it take effect. See socket(7) for more informa?

 tion.

 TCP supports urgent data. Urgent data is used to signal the receiver

 that some important message is part of the data stream and that it

 should be processed as soon as possible. To send urgent data specify

 the MSG_OOB option to send(2). When urgent data is received, the ker?

 nel sends a SIGURG signal to the process or process group that has been

 set as the socket "owner" using the SIOCSPGRP or FIOSETOWN ioctls (or

 the POSIX.1-specified fcntl(2) F_SETOWN operation). When the SO_OOBIN?

 LINE socket option is enabled, urgent data is put into the normal data

 stream (a program can test for its location using the SIOCATMARK ioctl

 described below), otherwise it can be received only when the MSG_OOB

 flag is set for recv(2) or recvmsg(2). Page 2/23

 When out-of-band data is present, select(2) indicates the file descrip?

 tor as having an exceptional condition and poll (2) indicates a POLLPRI

 event.

 Linux 2.4 introduced a number of changes for improved throughput and

 scaling, as well as enhanced functionality. Some of these features in?

 clude support for zero-copy sendfile(2), Explicit Congestion Notifica?

 tion, new management of TIME_WAIT sockets, keep-alive socket options

 and support for Duplicate SACK extensions.

 Address formats

 TCP is built on top of IP (see ip(7)). The address formats defined by

 ip(7) apply to TCP. TCP supports point-to-point communication only;

 broadcasting and multicasting are not supported.

 /proc interfaces

 System-wide TCP parameter settings can be accessed by files in the di?

 rectory /proc/sys/net/ipv4/. In addition, most IP /proc interfaces

 also apply to TCP; see ip(7). Variables described as Boolean take an

 integer value, with a nonzero value ("true") meaning that the corre?

 sponding option is enabled, and a zero value ("false") meaning that the

 option is disabled.

 tcp_abc (Integer; default: 0; Linux 2.6.15 to Linux 3.8)

 Control the Appropriate Byte Count (ABC), defined in RFC 3465.

 ABC is a way of increasing the congestion window (cwnd) more

 slowly in response to partial acknowledgments. Possible values

 are:

 0 increase cwnd once per acknowledgment (no ABC)

 1 increase cwnd once per acknowledgment of full sized segment

 2 allow increase cwnd by two if acknowledgment is of two seg?

 ments to compensate for delayed acknowledgments.

 tcp_abort_on_overflow (Boolean; default: disabled; since Linux 2.4)

 Enable resetting connections if the listening service is too

 slow and unable to keep up and accept them. It means that if

 overflow occurred due to a burst, the connection will recover.

 Enable this option only if you are really sure that the listen? Page 3/23

 ing daemon cannot be tuned to accept connections faster. En?

 abling this option can harm the clients of your server.

 tcp_adv_win_scale (integer; default: 2; since Linux 2.4)

 Count buffering overhead as bytes/2^tcp_adv_win_scale, if

 tcp_adv_win_scale is greater than 0; or bytes-

 bytes/2^(-tcp_adv_win_scale), if tcp_adv_win_scale is less than

 or equal to zero.

 The socket receive buffer space is shared between the applica?

 tion and kernel. TCP maintains part of the buffer as the TCP

 window, this is the size of the receive window advertised to the

 other end. The rest of the space is used as the "application"

 buffer, used to isolate the network from scheduling and applica?

 tion latencies. The tcp_adv_win_scale default value of 2 im?

 plies that the space used for the application buffer is one

 fourth that of the total.

 tcp_allowed_congestion_control (String; default: see text; since Linux

 2.4.20)

 Show/set the congestion control algorithm choices available to

 unprivileged processes (see the description of the TCP_CONGES?

 TION socket option). The items in the list are separated by

 white space and terminated by a newline character. The list is

 a subset of those listed in tcp_available_congestion_control.

 The default value for this list is "reno" plus the default set?

 ting of tcp_congestion_control.

 tcp_autocorking (Boolean; default: enabled; since Linux 3.14)

 If this option is enabled, the kernel tries to coalesce small

 writes (from consecutive write(2) and sendmsg(2) calls) as much

 as possible, in order to decrease the total number of sent pack?

 ets. Coalescing is done if at least one prior packet for the

 flow is waiting in Qdisc queues or device transmit queue. Ap?

 plications can still use the TCP_CORK socket option to obtain

 optimal behavior when they know how/when to uncork their sock?

 ets. Page 4/23

 tcp_available_congestion_control (String; read-only; since Linux

 2.4.20)

 Show a list of the congestion-control algorithms that are regis?

 tered. The items in the list are separated by white space and

 terminated by a newline character. This list is a limiting set

 for the list in tcp_allowed_congestion_control. More conges?

 tion-control algorithms may be available as modules, but not

 loaded.

 tcp_app_win (integer; default: 31; since Linux 2.4)

 This variable defines how many bytes of the TCP window are re?

 served for buffering overhead.

 A maximum of (window/2^tcp_app_win, mss) bytes in the window are

 reserved for the application buffer. A value of 0 implies that

 no amount is reserved.

 tcp_base_mss (Integer; default: 512; since Linux 2.6.17)

 The initial value of search_low to be used by the packetization

 layer Path MTU discovery (MTU probing). If MTU probing is en?

 abled, this is the initial MSS used by the connection.

 tcp_bic (Boolean; default: disabled; Linux 2.4.27/2.6.6 to 2.6.13)

 Enable BIC TCP congestion control algorithm. BIC-TCP is a

 sender-side-only change that ensures a linear RTT fairness under

 large windows while offering both scalability and bounded TCP-

 friendliness. The protocol combines two schemes called additive

 increase and binary search increase. When the congestion window

 is large, additive increase with a large increment ensures lin?

 ear RTT fairness as well as good scalability. Under small con?

 gestion windows, binary search increase provides TCP friendli?

 ness.

 tcp_bic_low_window (integer; default: 14; Linux 2.4.27/2.6.6 to 2.6.13)

 Set the threshold window (in packets) where BIC TCP starts to

 adjust the congestion window. Below this threshold BIC TCP be?

 haves the same as the default TCP Reno.

 tcp_bic_fast_convergence (Boolean; default: enabled; Linux 2.4.27/2.6.6 Page 5/23

 to 2.6.13)

 Force BIC TCP to more quickly respond to changes in congestion

 window. Allows two flows sharing the same connection to con?

 verge more rapidly.

 tcp_congestion_control (String; default: see text; since Linux 2.4.13)

 Set the default congestion-control algorithm to be used for new

 connections. The algorithm "reno" is always available, but ad?

 ditional choices may be available depending on kernel configura?

 tion. The default value for this file is set as part of kernel

 configuration.

 tcp_dma_copybreak (integer; default: 4096; since Linux 2.6.24)

 Lower limit, in bytes, of the size of socket reads that will be

 offloaded to a DMA copy engine, if one is present in the system

 and the kernel was configured with the CONFIG_NET_DMA option.

 tcp_dsack (Boolean; default: enabled; since Linux 2.4)

 Enable RFC 2883 TCP Duplicate SACK support.

 tcp_ecn (Integer; default: see below; since Linux 2.4)

 Enable RFC 3168 Explicit Congestion Notification.

 This file can have one of the following values:

 0 Disable ECN. Neither initiate nor accept ECN. This was

 the default up to and including Linux 2.6.30.

 1 Enable ECN when requested by incoming connections and

 also request ECN on outgoing connection attempts.

 2 Enable ECN when requested by incoming connections, but do

 not request ECN on outgoing connections. This value is

 supported, and is the default, since Linux 2.6.31.

 When enabled, connectivity to some destinations could be af?

 fected due to older, misbehaving middle boxes along the path,

 causing connections to be dropped. However, to facilitate and

 encourage deployment with option 1, and to work around such

 buggy equipment, the tcp_ecn_fallback option has been intro?

 duced.

 tcp_ecn_fallback (Boolean; default: enabled; since Linux 4.1) Page 6/23

 Enable RFC 3168, Section 6.1.1.1. fallback. When enabled, out?

 going ECN-setup SYNs that time out within the normal SYN re?

 transmission timeout will be resent with CWR and ECE cleared.

 tcp_fack (Boolean; default: enabled; since Linux 2.2)

 Enable TCP Forward Acknowledgement support.

 tcp_fin_timeout (integer; default: 60; since Linux 2.2)

 This specifies how many seconds to wait for a final FIN packet

 before the socket is forcibly closed. This is strictly a viola?

 tion of the TCP specification, but required to prevent denial-

 of-service attacks. In Linux 2.2, the default value was 180.

 tcp_frto (integer; default: see below; since Linux 2.4.21/2.6)

 Enable F-RTO, an enhanced recovery algorithm for TCP retransmis?

 sion timeouts (RTOs). It is particularly beneficial in wireless

 environments where packet loss is typically due to random radio

 interference rather than intermediate router congestion. See

 RFC 4138 for more details.

 This file can have one of the following values:

 0 Disabled. This was the default up to and including Linux

 2.6.23.

 1 The basic version F-RTO algorithm is enabled.

 2 Enable SACK-enhanced F-RTO if flow uses SACK. The basic ver?

 sion can be used also when SACK is in use though in that case

 scenario(s) exists where F-RTO interacts badly with the

 packet counting of the SACK-enabled TCP flow. This value is

 the default since Linux 2.6.24.

 Before Linux 2.6.22, this parameter was a Boolean value, sup?

 porting just values 0 and 1 above.

 tcp_frto_response (integer; default: 0; since Linux 2.6.22)

 When F-RTO has detected that a TCP retransmission timeout was

 spurious (i.e., the timeout would have been avoided had TCP set

 a longer retransmission timeout), TCP has several options con?

 cerning what to do next. Possible values are:

 0 Rate halving based; a smooth and conservative response, re? Page 7/23

 sults in halved congestion window (cwnd) and slow-start

 threshold (ssthresh) after one RTT.

 1 Very conservative response; not recommended because even

 though being valid, it interacts poorly with the rest of

 Linux TCP; halves cwnd and ssthresh immediately.

 2 Aggressive response; undoes congestion-control measures that

 are now known to be unnecessary (ignoring the possibility of

 a lost retransmission that would require TCP to be more cau?

 tious); cwnd and ssthresh are restored to the values prior to

 timeout.

 tcp_keepalive_intvl (integer; default: 75; since Linux 2.4)

 The number of seconds between TCP keep-alive probes.

 tcp_keepalive_probes (integer; default: 9; since Linux 2.2)

 The maximum number of TCP keep-alive probes to send before giv?

 ing up and killing the connection if no response is obtained

 from the other end.

 tcp_keepalive_time (integer; default: 7200; since Linux 2.2)

 The number of seconds a connection needs to be idle before TCP

 begins sending out keep-alive probes. Keep-alives are sent only

 when the SO_KEEPALIVE socket option is enabled. The default

 value is 7200 seconds (2 hours). An idle connection is termi?

 nated after approximately an additional 11 minutes (9 probes an

 interval of 75 seconds apart) when keep-alive is enabled.

 Note that underlying connection tracking mechanisms and applica?

 tion timeouts may be much shorter.

 tcp_low_latency (Boolean; default: disabled; since Linux 2.4.21/2.6;

 obsolete since Linux 4.14)

 If enabled, the TCP stack makes decisions that prefer lower la?

 tency as opposed to higher throughput. It this option is dis?

 abled, then higher throughput is preferred. An example of an

 application where this default should be changed would be a Be?

 owulf compute cluster. Since Linux 4.14, this file still ex?

 ists, but its value is ignored. Page 8/23

 tcp_max_orphans (integer; default: see below; since Linux 2.4)

 The maximum number of orphaned (not attached to any user file

 handle) TCP sockets allowed in the system. When this number is

 exceeded, the orphaned connection is reset and a warning is

 printed. This limit exists only to prevent simple denial-of-

 service attacks. Lowering this limit is not recommended. Net?

 work conditions might require you to increase the number of or?

 phans allowed, but note that each orphan can eat up to ~64 kB of

 unswappable memory. The default initial value is set equal to

 the kernel parameter NR_FILE. This initial default is adjusted

 depending on the memory in the system.

 tcp_max_syn_backlog (integer; default: see below; since Linux 2.2)

 The maximum number of queued connection requests which have

 still not received an acknowledgement from the connecting

 client. If this number is exceeded, the kernel will begin drop?

 ping requests. The default value of 256 is increased to 1024

 when the memory present in the system is adequate or greater (>=

 128 MB), and reduced to 128 for those systems with very low mem?

 ory (<= 32 MB).

 Prior to Linux 2.6.20, it was recommended that if this needed to

 be increased above 1024, the size of the SYNACK hash table

 (TCP_SYNQ_HSIZE) in include/net/tcp.h should be modified to keep

 TCP_SYNQ_HSIZE * 16 <= tcp_max_syn_backlog

 and the kernel should be recompiled. In Linux 2.6.20, the fixed

 sized TCP_SYNQ_HSIZE was removed in favor of dynamic sizing.

 tcp_max_tw_buckets (integer; default: see below; since Linux 2.4)

 The maximum number of sockets in TIME_WAIT state allowed in the

 system. This limit exists only to prevent simple denial-of-ser?

 vice attacks. The default value of NR_FILE*2 is adjusted de?

 pending on the memory in the system. If this number is ex?

 ceeded, the socket is closed and a warning is printed.

 tcp_moderate_rcvbuf (Boolean; default: enabled; since Linux

 2.4.17/2.6.7) Page 9/23

 If enabled, TCP performs receive buffer auto-tuning, attempting

 to automatically size the buffer (no greater than tcp_rmem[2])

 to match the size required by the path for full throughput.

 tcp_mem (since Linux 2.4)

 This is a vector of 3 integers: [low, pressure, high]. These

 bounds, measured in units of the system page size, are used by

 TCP to track its memory usage. The defaults are calculated at

 boot time from the amount of available memory. (TCP can only

 use low memory for this, which is limited to around 900

 megabytes on 32-bit systems. 64-bit systems do not suffer this

 limitation.)

 low TCP doesn't regulate its memory allocation when the num?

 ber of pages it has allocated globally is below this num?

 ber.

 pressure

 When the amount of memory allocated by TCP exceeds this

 number of pages, TCP moderates its memory consumption.

 This memory pressure state is exited once the number of

 pages allocated falls below the low mark.

 high The maximum number of pages, globally, that TCP will al?

 locate. This value overrides any other limits imposed by

 the kernel.

 tcp_mtu_probing (integer; default: 0; since Linux 2.6.17)

 This parameter controls TCP Packetization-Layer Path MTU Discov?

 ery. The following values may be assigned to the file:

 0 Disabled

 1 Disabled by default, enabled when an ICMP black hole detected

 2 Always enabled, use initial MSS of tcp_base_mss.

 tcp_no_metrics_save (Boolean; default: disabled; since Linux 2.6.6)

 By default, TCP saves various connection metrics in the route

 cache when the connection closes, so that connections estab?

 lished in the near future can use these to set initial condi?

 tions. Usually, this increases overall performance, but it may Page 10/23

 sometimes cause performance degradation. If tcp_no_metrics_save

 is enabled, TCP will not cache metrics on closing connections.

 tcp_orphan_retries (integer; default: 8; since Linux 2.4)

 The maximum number of attempts made to probe the other end of a

 connection which has been closed by our end.

 tcp_reordering (integer; default: 3; since Linux 2.4)

 The maximum a packet can be reordered in a TCP packet stream

 without TCP assuming packet loss and going into slow start. It

 is not advisable to change this number. This is a packet re?

 ordering detection metric designed to minimize unnecessary back

 off and retransmits provoked by reordering of packets on a con?

 nection.

 tcp_retrans_collapse (Boolean; default: enabled; since Linux 2.2)

 Try to send full-sized packets during retransmit.

 tcp_retries1 (integer; default: 3; since Linux 2.2)

 The number of times TCP will attempt to retransmit a packet on

 an established connection normally, without the extra effort of

 getting the network layers involved. Once we exceed this number

 of retransmits, we first have the network layer update the route

 if possible before each new retransmit. The default is the RFC

 specified minimum of 3.

 tcp_retries2 (integer; default: 15; since Linux 2.2)

 The maximum number of times a TCP packet is retransmitted in es?

 tablished state before giving up. The default value is 15,

 which corresponds to a duration of approximately between 13 to

 30 minutes, depending on the retransmission timeout. The

 RFC 1122 specified minimum limit of 100 seconds is typically

 deemed too short.

 tcp_rfc1337 (Boolean; default: disabled; since Linux 2.2)

 Enable TCP behavior conformant with RFC 1337. When disabled, if

 a RST is received in TIME_WAIT state, we close the socket imme?

 diately without waiting for the end of the TIME_WAIT period.

 tcp_rmem (since Linux 2.4) Page 11/23

 This is a vector of 3 integers: [min, default, max]. These pa?

 rameters are used by TCP to regulate receive buffer sizes. TCP

 dynamically adjusts the size of the receive buffer from the de?

 faults listed below, in the range of these values, depending on

 memory available in the system.

 min minimum size of the receive buffer used by each TCP

 socket. The default value is the system page size. (On

 Linux 2.4, the default value is 4 kB, lowered to

 PAGE_SIZE bytes in low-memory systems.) This value is

 used to ensure that in memory pressure mode, allocations

 below this size will still succeed. This is not used to

 bound the size of the receive buffer declared using

 SO_RCVBUF on a socket.

 default

 the default size of the receive buffer for a TCP socket.

 This value overwrites the initial default buffer size

 from the generic global net.core.rmem_default defined for

 all protocols. The default value is 87380 bytes. (On

 Linux 2.4, this will be lowered to 43689 in low-memory

 systems.) If larger receive buffer sizes are desired,

 this value should be increased (to affect all sockets).

 To employ large TCP windows, the net.ipv4.tcp_win?

 dow_scaling must be enabled (default).

 max the maximum size of the receive buffer used by each TCP

 socket. This value does not override the global

 net.core.rmem_max. This is not used to limit the size of

 the receive buffer declared using SO_RCVBUF on a socket.

 The default value is calculated using the formula

 max(87380, min(4 MB, tcp_mem[1]*PAGE_SIZE/128))

 (On Linux 2.4, the default is 87380*2 bytes, lowered to

 87380 in low-memory systems).

 tcp_sack (Boolean; default: enabled; since Linux 2.2)

 Enable RFC 2018 TCP Selective Acknowledgements. Page 12/23

 tcp_slow_start_after_idle (Boolean; default: enabled; since Linux

 2.6.18)

 If enabled, provide RFC 2861 behavior and time out the conges?

 tion window after an idle period. An idle period is defined as

 the current RTO (retransmission timeout). If disabled, the con?

 gestion window will not be timed out after an idle period.

 tcp_stdurg (Boolean; default: disabled; since Linux 2.2)

 If this option is enabled, then use the RFC 1122 interpretation

 of the TCP urgent-pointer field. According to this interpreta?

 tion, the urgent pointer points to the last byte of urgent data.

 If this option is disabled, then use the BSD-compatible inter?

 pretation of the urgent pointer: the urgent pointer points to

 the first byte after the urgent data. Enabling this option may

 lead to interoperability problems.

 tcp_syn_retries (integer; default: 6; since Linux 2.2)

 The maximum number of times initial SYNs for an active TCP con?

 nection attempt will be retransmitted. This value should not be

 higher than 255. The default value is 6, which corresponds to

 retrying for up to approximately 127 seconds. Before Linux 3.7,

 the default value was 5, which (in conjunction with calculation

 based on other kernel parameters) corresponded to approximately

 180 seconds.

 tcp_synack_retries (integer; default: 5; since Linux 2.2)

 The maximum number of times a SYN/ACK segment for a passive TCP

 connection will be retransmitted. This number should not be

 higher than 255.

 tcp_syncookies (integer; default: 1; since Linux 2.2)

 Enable TCP syncookies. The kernel must be compiled with CON?

 FIG_SYN_COOKIES. The syncookies feature attempts to protect a

 socket from a SYN flood attack. This should be used as a last

 resort, if at all. This is a violation of the TCP protocol, and

 conflicts with other areas of TCP such as TCP extensions. It

 can cause problems for clients and relays. It is not recom? Page 13/23

 mended as a tuning mechanism for heavily loaded servers to help

 with overloaded or misconfigured conditions. For recommended

 alternatives see tcp_max_syn_backlog, tcp_synack_retries, and

 tcp_abort_on_overflow. Set to one of the following values:

 0 Disable TCP syncookies.

 1 Send out syncookies when the syn backlog queue of a socket

 overflows.

 2 (since Linux 3.12) Send out syncookies unconditionally. This

 can be useful for network testing.

 tcp_timestamps (integer; default: 1; since Linux 2.2)

 Set to one of the following values to enable or disable RFC 1323

 TCP timestamps:

 0 Disable timestamps.

 1 Enable timestamps as defined in RFC1323 and use random offset

 for each connection rather than only using the current time.

 2 As for the value 1, but without random offsets. Setting

 tcp_timestamps to this value is meaningful since Linux 4.10.

 tcp_tso_win_divisor (integer; default: 3; since Linux 2.6.9)

 This parameter controls what percentage of the congestion window

 can be consumed by a single TCP Segmentation Offload (TSO)

 frame. The setting of this parameter is a tradeoff between

 burstiness and building larger TSO frames.

 tcp_tw_recycle (Boolean; default: disabled; Linux 2.4 to 4.11)

 Enable fast recycling of TIME_WAIT sockets. Enabling this op?

 tion is not recommended as the remote IP may not use monotoni?

 cally increasing timestamps (devices behind NAT, devices with

 per-connection timestamp offsets). See RFC 1323 (PAWS) and RFC

 6191.

 tcp_tw_reuse (Boolean; default: disabled; since Linux 2.4.19/2.6)

 Allow to reuse TIME_WAIT sockets for new connections when it is

 safe from protocol viewpoint. It should not be changed without

 advice/request of technical experts.

 tcp_vegas_cong_avoid (Boolean; default: disabled; Linux 2.2 to 2.6.13) Page 14/23

 Enable TCP Vegas congestion avoidance algorithm. TCP Vegas is a

 sender-side-only change to TCP that anticipates the onset of

 congestion by estimating the bandwidth. TCP Vegas adjusts the

 sending rate by modifying the congestion window. TCP Vegas

 should provide less packet loss, but it is not as aggressive as

 TCP Reno.

 tcp_westwood (Boolean; default: disabled; Linux 2.4.26/2.6.3 to 2.6.13)

 Enable TCP Westwood+ congestion control algorithm. TCP West?

 wood+ is a sender-side-only modification of the TCP Reno proto?

 col stack that optimizes the performance of TCP congestion con?

 trol. It is based on end-to-end bandwidth estimation to set

 congestion window and slow start threshold after a congestion

 episode. Using this estimation, TCP Westwood+ adaptively sets a

 slow start threshold and a congestion window which takes into

 account the bandwidth used at the time congestion is experi?

 enced. TCP Westwood+ significantly increases fairness with re?

 spect to TCP Reno in wired networks and throughput over wireless

 links.

 tcp_window_scaling (Boolean; default: enabled; since Linux 2.2)

 Enable RFC 1323 TCP window scaling. This feature allows the use

 of a large window (> 64 kB) on a TCP connection, should the

 other end support it. Normally, the 16 bit window length field

 in the TCP header limits the window size to less than 64 kB. If

 larger windows are desired, applications can increase the size

 of their socket buffers and the window scaling option will be

 employed. If tcp_window_scaling is disabled, TCP will not nego?

 tiate the use of window scaling with the other end during con?

 nection setup.

 tcp_wmem (since Linux 2.4)

 This is a vector of 3 integers: [min, default, max]. These pa?

 rameters are used by TCP to regulate send buffer sizes. TCP dy?

 namically adjusts the size of the send buffer from the default

 values listed below, in the range of these values, depending on Page 15/23

 memory available.

 min Minimum size of the send buffer used by each TCP socket.

 The default value is the system page size. (On Linux

 2.4, the default value is 4 kB.) This value is used to

 ensure that in memory pressure mode, allocations below

 this size will still succeed. This is not used to bound

 the size of the send buffer declared using SO_SNDBUF on a

 socket.

 default

 The default size of the send buffer for a TCP socket.

 This value overwrites the initial default buffer size

 from the generic global /proc/sys/net/core/wmem_default

 defined for all protocols. The default value is 16 kB.

 If larger send buffer sizes are desired, this value

 should be increased (to affect all sockets). To employ

 large TCP windows, the /proc/sys/net/ipv4/tcp_win?

 dow_scaling must be set to a nonzero value (default).

 max The maximum size of the send buffer used by each TCP

 socket. This value does not override the value in

 /proc/sys/net/core/wmem_max. This is not used to limit

 the size of the send buffer declared using SO_SNDBUF on a

 socket. The default value is calculated using the for?

 mula

 max(65536, min(4 MB, tcp_mem[1]*PAGE_SIZE/128))

 (On Linux 2.4, the default value is 128 kB, lowered 64 kB

 depending on low-memory systems.)

 tcp_workaround_signed_windows (Boolean; default: disabled; since Linux

 2.6.26)

 If enabled, assume that no receipt of a window-scaling option

 means that the remote TCP is broken and treats the window as a

 signed quantity. If disabled, assume that the remote TCP is not

 broken even if we do not receive a window scaling option from

 it. Page 16/23

 Socket options

 To set or get a TCP socket option, call getsockopt(2) to read or set?

 sockopt(2) to write the option with the option level argument set to

 IPPROTO_TCP. Unless otherwise noted, optval is a pointer to an int.

 In addition, most IPPROTO_IP socket options are valid on TCP sockets.

 For more information see ip(7).

 Following is a list of TCP-specific socket options. For details of

 some other socket options that are also applicable for TCP sockets, see

 socket(7).

 TCP_CONGESTION (since Linux 2.6.13)

 The argument for this option is a string. This option allows

 the caller to set the TCP congestion control algorithm to be

 used, on a per-socket basis. Unprivileged processes are re?

 stricted to choosing one of the algorithms in tcp_allowed_con?

 gestion_control (described above). Privileged processes

 (CAP_NET_ADMIN) can choose from any of the available congestion-

 control algorithms (see the description of tcp_available_conges?

 tion_control above).

 TCP_CORK (since Linux 2.2)

 If set, don't send out partial frames. All queued partial

 frames are sent when the option is cleared again. This is use?

 ful for prepending headers before calling sendfile(2), or for

 throughput optimization. As currently implemented, there is a

 200 millisecond ceiling on the time for which output is corked

 by TCP_CORK. If this ceiling is reached, then queued data is

 automatically transmitted. This option can be combined with

 TCP_NODELAY only since Linux 2.5.71. This option should not be

 used in code intended to be portable.

 TCP_DEFER_ACCEPT (since Linux 2.4)

 Allow a listener to be awakened only when data arrives on the

 socket. Takes an integer value (seconds), this can bound the

 maximum number of attempts TCP will make to complete the connec?

 tion. This option should not be used in code intended to be Page 17/23

 portable.

 TCP_INFO (since Linux 2.4)

 Used to collect information about this socket. The kernel re?

 turns a struct tcp_info as defined in the file /usr/in?

 clude/linux/tcp.h. This option should not be used in code in?

 tended to be portable.

 TCP_KEEPCNT (since Linux 2.4)

 The maximum number of keepalive probes TCP should send before

 dropping the connection. This option should not be used in code

 intended to be portable.

 TCP_KEEPIDLE (since Linux 2.4)

 The time (in seconds) the connection needs to remain idle before

 TCP starts sending keepalive probes, if the socket option

 SO_KEEPALIVE has been set on this socket. This option should

 not be used in code intended to be portable.

 TCP_KEEPINTVL (since Linux 2.4)

 The time (in seconds) between individual keepalive probes. This

 option should not be used in code intended to be portable.

 TCP_LINGER2 (since Linux 2.4)

 The lifetime of orphaned FIN_WAIT2 state sockets. This option

 can be used to override the system-wide setting in the file

 /proc/sys/net/ipv4/tcp_fin_timeout for this socket. This is not

 to be confused with the socket(7) level option SO_LINGER. This

 option should not be used in code intended to be portable.

 TCP_MAXSEG

 The maximum segment size for outgoing TCP packets. In Linux 2.2

 and earlier, and in Linux 2.6.28 and later, if this option is

 set before connection establishment, it also changes the MSS

 value announced to the other end in the initial packet. Values

 greater than the (eventual) interface MTU have no effect. TCP

 will also impose its minimum and maximum bounds over the value

 provided.

 TCP_NODELAY Page 18/23

 If set, disable the Nagle algorithm. This means that segments

 are always sent as soon as possible, even if there is only a

 small amount of data. When not set, data is buffered until

 there is a sufficient amount to send out, thereby avoiding the

 frequent sending of small packets, which results in poor uti?

 lization of the network. This option is overridden by TCP_CORK;

 however, setting this option forces an explicit flush of pending

 output, even if TCP_CORK is currently set.

 TCP_QUICKACK (since Linux 2.4.4)

 Enable quickack mode if set or disable quickack mode if cleared.

 In quickack mode, acks are sent immediately, rather than delayed

 if needed in accordance to normal TCP operation. This flag is

 not permanent, it only enables a switch to or from quickack

 mode. Subsequent operation of the TCP protocol will once again

 enter/leave quickack mode depending on internal protocol pro?

 cessing and factors such as delayed ack timeouts occurring and

 data transfer. This option should not be used in code intended

 to be portable.

 TCP_SYNCNT (since Linux 2.4)

 Set the number of SYN retransmits that TCP should send before

 aborting the attempt to connect. It cannot exceed 255. This

 option should not be used in code intended to be portable.

 TCP_USER_TIMEOUT (since Linux 2.6.37)

 This option takes an unsigned int as an argument. When the

 value is greater than 0, it specifies the maximum amount of time

 in milliseconds that transmitted data may remain unacknowledged

 before TCP will forcibly close the corresponding connection and

 return ETIMEDOUT to the application. If the option value is

 specified as 0, TCP will use the system default.

 Increasing user timeouts allows a TCP connection to survive ex?

 tended periods without end-to-end connectivity. Decreasing user

 timeouts allows applications to "fail fast", if so desired.

 Otherwise, failure may take up to 20 minutes with the current Page 19/23

 system defaults in a normal WAN environment.

 This option can be set during any state of a TCP connection, but

 is effective only during the synchronized states of a connection

 (ESTABLISHED, FIN-WAIT-1, FIN-WAIT-2, CLOSE-WAIT, CLOSING, and

 LAST-ACK). Moreover, when used with the TCP keepalive

 (SO_KEEPALIVE) option, TCP_USER_TIMEOUT will override keepalive

 to determine when to close a connection due to keepalive fail?

 ure.

 The option has no effect on when TCP retransmits a packet, nor

 when a keepalive probe is sent.

 This option, like many others, will be inherited by the socket

 returned by accept(2), if it was set on the listening socket.

 Further details on the user timeout feature can be found in

 RFC 793 and RFC 5482 ("TCP User Timeout Option").

 TCP_WINDOW_CLAMP (since Linux 2.4)

 Bound the size of the advertised window to this value. The ker?

 nel imposes a minimum size of SOCK_MIN_RCVBUF/2. This option

 should not be used in code intended to be portable.

 Sockets API

 TCP provides limited support for out-of-band data, in the form of (a

 single byte of) urgent data. In Linux this means if the other end

 sends newer out-of-band data the older urgent data is inserted as nor?

 mal data into the stream (even when SO_OOBINLINE is not set). This

 differs from BSD-based stacks.

 Linux uses the BSD compatible interpretation of the urgent pointer

 field by default. This violates RFC 1122, but is required for interop?

 erability with other stacks. It can be changed via

 /proc/sys/net/ipv4/tcp_stdurg.

 It is possible to peek at out-of-band data using the recv(2) MSG_PEEK

 flag.

 Since version 2.4, Linux supports the use of MSG_TRUNC in the flags ar?

 gument of recv(2) (and recvmsg(2)). This flag causes the received

 bytes of data to be discarded, rather than passed back in a caller-sup? Page 20/23

 plied buffer. Since Linux 2.4.4, MSG_TRUNC also has this effect when

 used in conjunction with MSG_OOB to receive out-of-band data.

 Ioctls

 The following ioctl(2) calls return information in value. The correct

 syntax is:

 int value;

 error = ioctl(tcp_socket, ioctl_type, &value);

 ioctl_type is one of the following:

 SIOCINQ

 Returns the amount of queued unread data in the receive buffer.

 The socket must not be in LISTEN state, otherwise an error (EIN?

 VAL) is returned. SIOCINQ is defined in <linux/sockios.h>. Al?

 ternatively, you can use the synonymous FIONREAD, defined in

 <sys/ioctl.h>.

 SIOCATMARK

 Returns true (i.e., value is nonzero) if the inbound data stream

 is at the urgent mark.

 If the SO_OOBINLINE socket option is set, and SIOCATMARK returns

 true, then the next read from the socket will return the urgent

 data. If the SO_OOBINLINE socket option is not set, and SIOCAT?

 MARK returns true, then the next read from the socket will re?

 turn the bytes following the urgent data (to actually read the

 urgent data requires the recv(MSG_OOB) flag).

 Note that a read never reads across the urgent mark. If an ap?

 plication is informed of the presence of urgent data via se?

 lect(2) (using the exceptfds argument) or through delivery of a

 SIGURG signal, then it can advance up to the mark using a loop

 which repeatedly tests SIOCATMARK and performs a read (request?

 ing any number of bytes) as long as SIOCATMARK returns false.

 SIOCOUTQ

 Returns the amount of unsent data in the socket send queue. The

 socket must not be in LISTEN state, otherwise an error (EINVAL)

 is returned. SIOCOUTQ is defined in <linux/sockios.h>. Alter? Page 21/23

 natively, you can use the synonymous TIOCOUTQ, defined in

 <sys/ioctl.h>.

 Error handling

 When a network error occurs, TCP tries to resend the packet. If it

 doesn't succeed after some time, either ETIMEDOUT or the last received

 error on this connection is reported.

 Some applications require a quicker error notification. This can be

 enabled with the IPPROTO_IP level IP_RECVERR socket option. When this

 option is enabled, all incoming errors are immediately passed to the

 user program. Use this option with care ? it makes TCP less tolerant

 to routing changes and other normal network conditions.

ERRORS

 EAFNOTSUPPORT

 Passed socket address type in sin_family was not AF_INET.

 EPIPE The other end closed the socket unexpectedly or a read is exe?

 cuted on a shut down socket.

 ETIMEDOUT

 The other end didn't acknowledge retransmitted data after some

 time.

 Any errors defined for ip(7) or the generic socket layer may also be

 returned for TCP.

VERSIONS

 Support for Explicit Congestion Notification, zero-copy sendfile(2),

 reordering support and some SACK extensions (DSACK) were introduced in

 2.4. Support for forward acknowledgement (FACK), TIME_WAIT recycling,

 and per-connection keepalive socket options were introduced in 2.3.

BUGS

 Not all errors are documented.

 IPv6 is not described.

SEE ALSO

 accept(2), bind(2), connect(2), getsockopt(2), listen(2), recvmsg(2),

 sendfile(2), sendmsg(2), socket(2), ip(7), socket(7)

 The kernel source file Documentation/networking/ip-sysctl.txt. Page 22/23

 RFC 793 for the TCP specification.

 RFC 1122 for the TCP requirements and a description of the Nagle algo?

 rithm.

 RFC 1323 for TCP timestamp and window scaling options.

 RFC 1337 for a description of TIME_WAIT assassination hazards.

 RFC 3168 for a description of Explicit Congestion Notification.

 RFC 2581 for TCP congestion control algorithms.

 RFC 2018 and RFC 2883 for SACK and extensions to SACK.

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-12-21 TCP(7)

Page 23/23

