
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'tc-tunnel_key.8' command

$ man tc-tunnel_key.8

Tunnel metadata manipulation actioTunnelumetadata manipulation action in tc(8)

NAME

 tunnel_key - Tunnel metadata manipulation

SYNOPSIS

 tc ... action tunnel_key { unset | SET }

 SET := set src_ip ADDRESS dst_ip ADDRESS id KEY_ID dst_port UDP_PORT

 tos TOS ttl TTL [csum | nocsum]

DESCRIPTION

 The tunnel_key action combined with a shared IP tunnel device, allows

 one to perform IP tunnel en- or decapsulation on a packet, reflected by

 the operation modes UNSET and SET. The UNSET mode is optional - even

 without using it, the metadata information will be released automati?

 cally when packet processing will be finished. UNSET function could be

 used in cases when traffic is forwarded between two tunnels, where the

 metadata from the first tunnel will be used for encapsulation done by

 the second tunnel. SET mode requires the source and destination ip AD?

 DRESS and the tunnel key id KEY_ID which will be used by the ip tunnel

 shared device to create the tunnel header. The tunnel_key action is

 useful only in combination with a mirred redirect action to a shared IP

 tunnel device which will use the metadata (for SET) and unset the

 metadata created by it (for UNSET).

OPTIONS

 unset Unset the tunnel metadata created by the IP tunnel device. This Page 1/3

 function is not mandatory and might be used only in some spe?

 cific use cases (as explained above).

 set Set tunnel metadata to be used by the IP tunnel device. Requires

 src_ip and dst_ip options. id , dst_port , geneve_opts ,

 vxlan_opts and erspan_opts are optional.

 id Tunnel ID (for example VNI in VXLAN tunnel)

 src_ip Outer header source IP address (IPv4 or IPv6)

 dst_ip Outer header destination IP address (IPv4 or IPv6)

 dst_port

 Outer header destination UDP port

 geneve_opts

 Geneve variable length options. geneve_opts is specified

 in the form CLASS:TYPE:DATA, where CLASS is represented

 as a 16bit hexadecimal value, TYPE as an 8bit hexadecimal

 value and DATA as a variable length hexadecimal value.

 Additionally multiple options may be listed using a comma

 delimiter.

 vxlan_opts

 Vxlan metadata options. vxlan_opts is specified in the

 form GBP, as a 32bit number. Multiple options is not sup?

 ported.

 erspan_opts

 Erspan metadata options. erspan_opts is specified in the

 form VERSION:INDEX:DIR:HWID, where VERSION is represented

 as a 8bit number, INDEX as an 32bit number, DIR and HWID

 as a 8bit number. Multiple options is not supported.

 Note INDEX is used when VERSION is 1, and DIR and HWID

 are used when VERSION is 2.

 tos Outer header TOS

 ttl Outer header TTL

 [no]csum

 Controls outer UDP checksum. When set to csum (which is

 default), the outer UDP checksum is calculated and in? Page 2/3

 cluded in the packets. When set to nocsum, outer UDP

 checksum is zero. Note that when using zero UDP checksums

 with IPv6, the other tunnel endpoint must be configured

 to accept such packets. In Linux, this would be the

 udp6zerocsumrx option for the VXLAN tunnel interface.

 If using nocsum with IPv6, be sure you know what you are

 doing. Zero UDP checksums provide weaker protection

 against corrupted packets. See RFC6935 for details.

EXAMPLES

 The following example encapsulates incoming ICMP packets on eth0 into a

 vxlan tunnel, by setting metadata to VNI 11, source IP 11.11.0.1 and

 destination IP 11.11.0.2, and by redirecting the packet with the meta?

 data to device vxlan0, which will do the actual encapsulation using the

 metadata:

 #tc qdisc add dev eth0 handle ffff: ingress

 #tc filter add dev eth0 protocol ip parent ffff: \

 flower \

 ip_proto icmp \

 action tunnel_key set \

 src_ip 11.11.0.1 \

 dst_ip 11.11.0.2 \

 id 11 \

 action mirred egress redirect dev vxlan0

 Here is an example of the unset function: Incoming VXLAN traffic with

 outer IP's and VNI 11 is decapsulated by vxlan0 and metadata is unset

 before redirecting to tunl1 device:

 #tc qdisc add dev eth0 handle ffff: ingress

 #tc filter add dev vxlan0 protocol ip parent ffff: flower \

 enc_src_ip 11.11.0.2 enc_dst_ip 11.11.0.1 enc_key_id 11 action tunnel_key unset action mirred egress

redirect dev tunl1

SEE ALSO

 tc(8)

iproute2 Tunnel metadata manipulation action in tc(8) Page 3/3

