
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'tc-sfq.8' command

$ man tc-sfq.8

TC(8) Linux TC(8)

NAME

 sfq - Stochastic Fairness Queueing

SYNOPSIS

 tc qdisc ... [divisor hashtablesize] [limit packets] [perturb

 seconds] [quantum bytes] [flows number] [depth number] [head?

 drop] [redflowlimit bytes] [min bytes] [max bytes] [avpkt bytes

] [burst packets] [probability P] [ecn] [harddrop]

DESCRIPTION

 Stochastic Fairness Queueing is a classless queueing discipline avail?

 able for traffic control with the tc(8) command.

 SFQ does not shape traffic but only schedules the transmission of pack?

 ets, based on 'flows'. The goal is to ensure fairness so that each

 flow is able to send data in turn, thus preventing any single flow from

 drowning out the rest.

 This may in fact have some effect in mitigating a Denial of Service at?

 tempt.

 SFQ is work-conserving and therefore always delivers a packet if it has

 one available.

ALGORITHM

 On enqueueing, each packet is assigned to a hash bucket, based on the

 packets hash value. This hash value is either obtained from an exter?

 nal flow classifier (use tc filter to set them), or a default internal Page 1/5

 classifier if no external classifier has been configured.

 When the internal classifier is used, sfq uses

 (i) Source address

 (ii) Destination address

 (iii) Source and Destination port

 If these are available. SFQ knows about ipv4 and ipv6 and also UDP, TCP

 and ESP. Packets with other protocols are hashed based on the 32bits

 representation of their destination and source. A flow corresponds

 mostly to a TCP/IP connection.

 Each of these buckets should represent a unique flow. Because multiple

 flows may get hashed to the same bucket, sfqs internal hashing algo?

 rithm may be perturbed at configurable intervals so that the unfairness

 lasts only for a short while. Perturbation may however cause some inad?

 vertent packet reordering to occur. After linux-3.3, there is no packet

 reordering problem, but possible packet drops if rehashing hits one

 limit (number of flows or packets per flow)

 When dequeuing, each hashbucket with data is queried in a round robin

 fashion.

 Before linux-3.3, the compile time maximum length of the SFQ is 128

 packets, which can be spread over at most 128 buckets of 1024 avail?

 able. In case of overflow, tail-drop is performed on the fullest

 bucket, thus maintaining fairness.

 After linux-3.3, maximum length of SFQ is 65535 packets, and divisor

 limit is 65536. In case of overflow, tail-drop is performed on the

 fullest bucket, unless headdrop was requested.

PARAMETERS

 divisor

 Can be used to set a different hash table size, available from

 kernel 2.6.39 onwards. The specified divisor must be a power of

 two and cannot be larger than 65536. Default value: 1024.

 limit Upper limit of the SFQ. Can be used to reduce the default length

 of 127 packets. After linux-3.3, it can be raised.

 depth Limit of packets per flow (after linux-3.3). Default to 127 and Page 2/5

 can be lowered.

 perturb

 Interval in seconds for queue algorithm perturbation. Defaults

 to 0, which means that no perturbation occurs. Do not set too

 low for each perturbation may cause some packet reordering or

 losses. Advised value: 60 This value has no effect when external

 flow classification is used. Its better to increase divisor

 value to lower risk of hash collisions.

 quantum

 Amount of bytes a flow is allowed to dequeue during a round of

 the round robin process. Defaults to the MTU of the interface

 which is also the advised value and the minimum value.

 flows After linux-3.3, it is possible to change the default limit of

 flows. Default value is 127

 headdrop

 Default SFQ behavior is to perform tail-drop of packets from a

 flow. You can ask a headdrop instead, as this is known to pro?

 vide a better feedback for TCP flows.

 redflowlimit

 Configure the optional RED module on top of each SFQ flow. Ran?

 dom Early Detection principle is to perform packet marks or

 drops in a probabilistic way. (man tc-red for details about

 RED)

 redflowlimit configures the hard limit on the real (not average) queue size per SFQ flow in bytes.

 min Average queue size at which marking becomes a possibility. De?

 faults to max /3

 max At this average queue size, the marking probability is maximal.

 Defaults to redflowlimit /4

 probability

 Maximum probability for marking, specified as a floating

 point number from 0.0 to 1.0. Default value is 0.02

 avpkt Specified in bytes. Used with burst to determine the time con?

 stant for average queue size calculations. Default value is 1000 Page 3/5

 burst Used for determining how fast the average queue size is influ?

 enced by the real queue size.

 Default value is :

 (2 * min + max) / (3 * avpkt)

 ecn RED can either 'mark' or 'drop'. Explicit Congestion Notifica?

 tion allows RED to notify remote hosts that their rate exceeds

 the amount of bandwidth available. Non-ECN capable hosts can

 only be notified by dropping a packet. If this parameter is

 specified, packets which indicate that their hosts honor ECN

 will only be marked and not dropped, unless the queue size hits

 depth packets.

 harddrop

 If average flow queue size is above max bytes, this parameter

 forces a drop instead of ecn marking.

EXAMPLE & USAGE

 To attach to device ppp0:

 # tc qdisc add dev ppp0 root sfq

 Please note that SFQ, like all non-shaping (work-conserving) qdiscs, is

 only useful if it owns the queue. This is the case when the link speed

 equals the actually available bandwidth. This holds for regular phone

 modems, ISDN connections and direct non-switched ethernet links.

 Most often, cable modems and DSL devices do not fall into this cate?

 gory. The same holds for when connected to a switch and trying to send

 data to a congested segment also connected to the switch.

 In this case, the effective queue does not reside within Linux and is

 therefore not available for scheduling.

 Embed SFQ in a classful qdisc to make sure it owns the queue.

 It is possible to use external classifiers with sfq, for example to

 hash traffic based only on source/destination ip addresses:

 # tc filter add ... flow hash keys src,dst perturb 30 divisor 1024

 Note that the given divisor should match the one used by sfq. If you

 have changed the sfq default of 1024, use the same value for the flow

 hash filter, too. Page 4/5

 Example of sfq with optional RED mode :

 # tc qdisc add dev eth0 parent 1:1 handle 10: sfq limit 3000 flows 512

 divisor 16384

 redflowlimit 100000 min 8000 max 60000 probability 0.20 ecn headdrop

SOURCE

 o Paul E. McKenney "Stochastic Fairness Queuing", IEEE INFOCOMM'90

 Proceedings, San Francisco, 1990.

 o Paul E. McKenney "Stochastic Fairness Queuing", "Interworking:

 Research and Experience", v.2, 1991, p.113-131.

 o See also: M. Shreedhar and George Varghese "Efficient Fair Queu?

 ing using Deficit Round Robin", Proc. SIGCOMM 95.

SEE ALSO

 tc(8), tc-red(8)

AUTHORS

 Alexey N. Kuznetsov, <kuznet@ms2.inr.ac.ru>, Eric Dumazet <eric.du?

 mazet@gmail.com>.

 This manpage maintained by bert hubert <ahu@ds9a.nl>

iproute2 24 January 2012 TC(8)

Page 5/5

