
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'tc-flower.8' command

$ man tc-flower.8

Flower filter in tc(8) Linux Flower filter in tc(8)

NAME

 flower - flow based traffic control filter

SYNOPSIS

 tc filter ... flower [MATCH_LIST] [action ACTION_SPEC] [classid

 CLASSID] [hw_tc TCID]

 MATCH_LIST := [MATCH_LIST] MATCH

 MATCH := { indev ifname | verbose | skip_sw | skip_hw | { dst_mac |

 src_mac } MASKED_LLADDR | vlan_id VID | vlan_prio PRIORITY |

 vlan_ethtype { ipv4 | ipv6 | ETH_TYPE } | cvlan_id VID |

 cvlan_prio PRIORITY | cvlan_ethtype { ipv4 | ipv6 | ETH_TYPE }

 | pppoe_sid PSID | ppp_proto { ip | ipv6 | mpls_uc | mpls_mc |

 PPP_PROTO } | mpls LSE_LIST | mpls_label LABEL | mpls_tc TC |

 mpls_bos BOS | mpls_ttl TTL | ip_proto { tcp | udp | sctp |

 icmp | icmpv6 | IP_PROTO } | ip_tos MASKED_IP_TOS | ip_ttl

 MASKED_IP_TTL | { dst_ip | src_ip } PREFIX | { dst_port |

 src_port } { MASKED_NUMBER | min_port_number-max_port_number }

 | tcp_flags MASKED_TCP_FLAGS | type MASKED_TYPE | code

 MASKED_CODE | { arp_tip | arp_sip } IPV4_PREFIX | arp_op { re?

 quest | reply | OP } | { arp_tha | arp_sha } MASKED_LLADDR |

 enc_key_id KEY-ID | { enc_dst_ip | enc_src_ip } { ipv4_address

 | ipv6_address } | enc_dst_port port_number | enc_tos TOS |

 enc_ttl TTL | { geneve_opts | vxlan_opts | erspan_opts | Page 1/10

 gtp_opts } OPTIONS | ip_flags IP_FLAGS }

 LSE_LIST := [LSE_LIST] LSE

 LSE := lse depth DEPTH { label LABEL | tc TC | bos BOS | ttl TTL }

DESCRIPTION

 The flower filter matches flows to the set of keys specified and as?

 signs an arbitrarily chosen class ID to packets belonging to them. Ad?

 ditionally (or alternatively) an action from the generic action frame?

 work may be called.

OPTIONS

 action ACTION_SPEC

 Apply an action from the generic actions framework on matching

 packets.

 classid CLASSID

 Specify a class to pass matching packets on to. CLASSID is in

 the form X:Y, while X and Y are interpreted as numbers in hexa?

 decimal format.

 hw_tc TCID

 Specify a hardware traffic class to pass matching packets on to.

 TCID is in the range 0 through 15.

 indev ifname

 Match on incoming interface name. Obviously this makes sense

 only for forwarded flows. ifname is the name of an interface

 which must exist at the time of tc invocation.

 verbose

 Enable verbose logging, including offloading errors when not us?

 ing skip_sw flag.

 skip_sw

 Do not process filter by software. If hardware has no offload

 support for this filter, or TC offload is not enabled for the

 interface, operation will fail.

 skip_hw

 Do not process filter by hardware.

 dst_mac MASKED_LLADDR Page 2/10

 src_mac MASKED_LLADDR

 Match on source or destination MAC address. A mask may be op?

 tionally provided to limit the bits of the address which are

 matched. A mask is provided by following the address with a

 slash and then the mask. It may be provided in LLADDR format, in

 which case it is a bitwise mask, or as a number of high bits to

 match. If the mask is missing then a match on all bits is as?

 sumed.

 num_of_vlans NUM

 Match on the number of vlan tags in the packet. NUM can be 0 or

 small positive integer. Typically in 0-4 range.

 vlan_id VID

 Match on vlan tag id. VID is an unsigned 12bit value in decimal

 format.

 vlan_prio PRIORITY

 Match on vlan tag priority. PRIORITY is an unsigned 3bit value

 in decimal format.

 vlan_ethtype VLAN_ETH_TYPE

 Match on layer three protocol. VLAN_ETH_TYPE may be either

 ipv4, ipv6 or an unsigned 16bit value in hexadecimal format. To

 match on QinQ packet, it must be 802.1Q or 802.1AD.

 cvlan_id VID

 Match on QinQ inner vlan tag id. VID is an unsigned 12bit value

 in decimal format.

 cvlan_prio PRIORITY

 Match on QinQ inner vlan tag priority. PRIORITY is an unsigned

 3bit value in decimal format.

 cvlan_ethtype VLAN_ETH_TYPE

 Match on QinQ layer three protocol. VLAN_ETH_TYPE may be either

 ipv4, ipv6 or an unsigned 16bit value in hexadecimal format.

 pppoe_sid PSID

 Match on PPPoE session id. PSID is an unsigned 16bit value in

 decimal format. Page 3/10

 ppp_proto PPP_PROTO

 Match on PPP layer three protocol. PPP_PROTO may be either ip,

 ipv6, mpls_uc, mpls_mc or an unsigned 16bit value in hexadecimal

 format.

 mpls LSE_LIST

 Match on the MPLS label stack. LSE_LIST is a list of Label

 Stack Entries, each introduced by the lse keyword. This option

 can't be used together with the standalone mpls_label, mpls_tc,

 mpls_bos and mpls_ttl options.

 lse LSE_OPTIONS

 Match on an MPLS Label Stack Entry. LSE_OPTIONS is a

 list of options that describe the properties of the LSE

 to match.

 depth DEPTH

 The depth of the Label Stack Entry to consider.

 Depth starts at 1 (the outermost Label Stack En?

 try). The maximum usable depth may be limited by

 the kernel. This option is mandatory. DEPTH is an

 unsigned 8 bit value in decimal format.

 label LABEL

 Match on the MPLS Label field at the specified

 depth. LABEL is an unsigned 20 bit value in deci?

 mal format.

 tc TC Match on the MPLS Traffic Class field at the spec?

 ified depth. TC is an unsigned 3 bit value in

 decimal format.

 bos BOS

 Match on the MPLS Bottom Of Stack field at the

 specified depth. BOS is a 1 bit value in decimal

 format.

 ttl TTL

 Match on the MPLS Time To Live field at the speci?

 fied depth. TTL is an unsigned 8 bit value in Page 4/10

 decimal format.

 mpls_label LABEL

 Match the label id in the outermost MPLS label stack entry. LA?

 BEL is an unsigned 20 bit value in decimal format.

 mpls_tc TC

 Match on the MPLS TC field, which is typically used for packet

 priority, in the outermost MPLS label stack entry. TC is an un?

 signed 3 bit value in decimal format.

 mpls_bos BOS

 Match on the MPLS Bottom Of Stack field in the outermost MPLS

 label stack entry. BOS is a 1 bit value in decimal format.

 mpls_ttl TTL

 Match on the MPLS Time To Live field in the outermost MPLS label

 stack entry. TTL is an unsigned 8 bit value in decimal format.

 ip_proto IP_PROTO

 Match on layer four protocol. IP_PROTO may be tcp, udp, sctp,

 icmp, icmpv6 or an unsigned 8bit value in hexadecimal format.

 ip_tos MASKED_IP_TOS

 Match on ipv4 TOS or ipv6 traffic-class - eight bits in hexadec?

 imal format. A mask may be optionally provided to limit the

 bits which are matched. A mask is provided by following the

 value with a slash and then the mask. If the mask is missing

 then a match on all bits is assumed.

 ip_ttl MASKED_IP_TTL

 Match on ipv4 TTL or ipv6 hop-limit - eight bits value in deci?

 mal or hexadecimal format. A mask may be optionally provided to

 limit the bits which are matched. Same logic is used for the

 mask as with matching on ip_tos.

 dst_ip PREFIX

 src_ip PREFIX

 Match on source or destination IP address. PREFIX must be a

 valid IPv4 or IPv6 address, depending on the protocol option to

 tc filter, optionally followed by a slash and the prefix length. Page 5/10

 If the prefix is missing, tc assumes a full-length host match.

 dst_port { MASKED_NUMBER | MIN_VALUE-MAX_VALUE }

 src_port { MASKED_NUMBER | MIN_VALUE-MAX_VALUE }

 Match on layer 4 protocol source or destination port number,

 with an optional mask. Alternatively, the minimum and maximum

 values can be specified to match on a range of layer 4 protocol

 source or destination port numbers. Only available for ip_proto

 values udp, tcp and sctp which have to be specified in before?

 hand.

 tcp_flags MASKED_TCP_FLAGS

 Match on TCP flags represented as 12bit bitfield in in hexadeci?

 mal format. A mask may be optionally provided to limit the bits

 which are matched. A mask is provided by following the value

 with a slash and then the mask. If the mask is missing then a

 match on all bits is assumed.

 type MASKED_TYPE

 code MASKED_CODE

 Match on ICMP type or code. A mask may be optionally provided to

 limit the bits of the address which are matched. A mask is pro?

 vided by following the address with a slash and then the mask.

 The mask must be as a number which represents a bitwise mask If

 the mask is missing then a match on all bits is assumed. Only

 available for ip_proto values icmp and icmpv6 which have to be

 specified in beforehand.

 arp_tip IPV4_PREFIX

 arp_sip IPV4_PREFIX

 Match on ARP or RARP sender or target IP address. IPV4_PREFIX

 must be a valid IPv4 address optionally followed by a slash and

 the prefix length. If the prefix is missing, tc assumes a full-

 length host match.

 arp_op ARP_OP

 Match on ARP or RARP operation. ARP_OP may be request, reply or

 an integer value 0, 1 or 2. A mask may be optionally provided Page 6/10

 to limit the bits of the operation which are matched. A mask is

 provided by following the address with a slash and then the

 mask. It may be provided as an unsigned 8 bit value representing

 a bitwise mask. If the mask is missing then a match on all bits

 is assumed.

 arp_sha MASKED_LLADDR

 arp_tha MASKED_LLADDR

 Match on ARP or RARP sender or target MAC address. A mask may

 be optionally provided to limit the bits of the address which

 are matched. A mask is provided by following the address with a

 slash and then the mask. It may be provided in LLADDR format, in

 which case it is a bitwise mask, or as a number of high bits to

 match. If the mask is missing then a match on all bits is as?

 sumed.

 enc_key_id NUMBER

 enc_dst_ip PREFIX

 enc_src_ip PREFIX

 enc_dst_port NUMBER

 enc_tos NUMBER

 enc_ttl NUMBER

 ct_state CT_STATE

 ct_zone CT_MASKED_ZONE

 ct_mark CT_MASKED_MARK

 ct_label CT_MASKED_LABEL

 Matches on connection tracking info

 CT_STATE

 Match the connection state, and can be combination of

 [{+|-}flag] flags, where flag can be one of

 trk - Tracked connection.

 new - New connection.

 est - Established connection.

 rpl - The packet is in the reply direction, meaning that

 it is in the opposite direction from the packet that ini? Page 7/10

 tiated the connection.

 inv - The state is invalid. The packet couldn't be asso?

 ciated to a connection.

 rel - The packet is related to an existing connection.

 Example: +trk+est

 CT_MASKED_ZONE

 Match the connection zone, and can be masked.

 CT_MASKED_MARK

 32bit match on the connection mark, and can be masked.

 CT_MASKED_LABEL

 128bit match on the connection label, and can be masked.

 geneve_opts OPTIONS

 vxlan_opts OPTIONS

 erspan_opts OPTIONS

 gtp_opts OPTIONS

 Match on IP tunnel metadata. Key id NUMBER is a 32 bit tunnel

 key id (e.g. VNI for VXLAN tunnel). PREFIX must be a valid IPv4

 or IPv6 address optionally followed by a slash and the prefix

 length. If the prefix is missing, tc assumes a full-length host

 match. Dst port NUMBER is a 16 bit UDP dst port. Tos NUMBER is

 an 8 bit tos (dscp+ecn) value, ttl NUMBER is an 8 bit time-to-

 live value. geneve_opts OPTIONS must be a valid list of comma-

 separated geneve options where each option consists of a key op?

 tionally followed by a slash and corresponding mask. If the

 masks is missing, tc assumes a full-length match. The options

 can be described in the form

 CLASS:TYPE:DATA/CLASS_MASK:TYPE_MASK:DATA_MASK, where CLASS is

 represented as a 16bit hexadecimal value, TYPE as an 8bit hexa?

 decimal value and DATA as a variable length hexadecimal value.

 vxlan_opts OPTIONS doesn't support multiple options, and it con?

 sists of a key followed by a slash and corresponding mask. If

 the mask is missing, tc assumes a full-length match. The option

 can be described in the form GBP/GBP_MASK, where GBP is repre? Page 8/10

 sented as a 32bit number. erspan_opts OPTIONS doesn't support

 multiple options, and it consists of a key followed by a slash

 and corresponding mask. If the mask is missing, tc assumes a

 full-length match. The option can be described in the form VER?

 SION:INDEX:DIR:HWID/VERSION:INDEX_MASK:DIR_MASK:HWID_MASK, where

 VERSION is represented as a 8bit number, INDEX as an 32bit num?

 ber, DIR and HWID as a 8bit number. Multiple options is not sup?

 ported. Note INDEX/INDEX_MASK is used when VERSION is 1, and

 DIR/DIR_MASK and HWID/HWID_MASK are used when VERSION is 2.

 gtp_opts OPTIONS doesn't support multiple options, and it con?

 sists of a key followed by a slash and corresponding mask. If

 the mask is missing, tc assumes a full-length match. The option

 can be described in the form PDU_TYPE:QFI/PDU_TYPE_MASK:QFI_MASK

 where both PDU_TYPE and QFI are represented as a 8bit hexadeci?

 mal values.

 ip_flags IP_FLAGS

 IP_FLAGS may be either frag, nofrag, firstfrag or nofirstfrag

 where frag and nofrag could be used to match on fragmented pack?

 ets or not, respectively. firstfrag and nofirstfrag can be used

 to further distinguish fragmented packet. firstfrag can be used

 to indicate the first fragmented packet. nofirstfrag can be used

 to indicates subsequent fragmented packets or non-fragmented

 packets.

NOTES

 As stated above where applicable, matches of a certain layer implicitly

 depend on the matches of the next lower layer. Precisely, layer one and

 two matches (indev, dst_mac and src_mac) have no dependency, MPLS and

 layer three matches (mpls, mpls_label, mpls_tc, mpls_bos, mpls_ttl,

 ip_proto, dst_ip, src_ip, arp_tip, arp_sip, arp_op, arp_tha, arp_sha

 and ip_flags) depend on the protocol option of tc filter, layer four

 port matches (dst_port and src_port) depend on ip_proto being set to

 tcp, udp or sctp, and finally ICMP matches (code and type) depend on

 ip_proto being set to icmp or icmpv6. Page 9/10

 There can be only used one mask per one prio. If user needs to specify

 different mask, he has to use different prio.

SEE ALSO

 tc(8), tc-flow(8)

iproute2 22 Oct 2015 Flower filter in tc(8)

Page 10/10

