
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'tc-cbq-details.8' command

$ man tc-cbq-details.8

CBQ(8) Linux CBQ(8)

NAME

 CBQ - Class Based Queueing

SYNOPSIS

 tc qdisc ... dev dev (parent classid | root) [handle major:] cbq

 avpkt bytes bandwidth rate [cell bytes] [ewma log] [mpu bytes]

 tc class ... dev dev parent major:[minor] [classid major:minor] cbq

 allot bytes [bandwidth rate] [rate rate] prio priority [weight

 weight] [minburst packets] [maxburst packets] [ewma log] [cell

 bytes] avpkt bytes [mpu bytes] [bounded isolated] [split handle &

 defmap defmap] [estimator interval timeconstant]

DESCRIPTION

 Class Based Queueing is a classful qdisc that implements a rich

 linksharing hierarchy of classes. It contains shaping elements as well

 as prioritizing capabilities. Shaping is performed using link idle time

 calculations based on the timing of dequeue events and underlying link

 bandwidth.

SHAPING ALGORITHM

 Shaping is done using link idle time calculations, and actions taken if

 these calculations deviate from set limits.

 When shaping a 10mbit/s connection to 1mbit/s, the link will be idle

 90% of the time. If it isn't, it needs to be throttled so that it IS

 idle 90% of the time. Page 1/9

 From the kernel's perspective, this is hard to measure, so CBQ instead

 derives the idle time from the number of microseconds (in fact,

 jiffies) that elapse between requests from the device driver for more

 data. Combined with the knowledge of packet sizes, this is used to ap?

 proximate how full or empty the link is.

 This is rather circumspect and doesn't always arrive at proper results.

 For example, what is the actual link speed of an interface that is not

 really able to transmit the full 100mbit/s of data, perhaps because of

 a badly implemented driver? A PCMCIA network card will also never

 achieve 100mbit/s because of the way the bus is designed - again, how

 do we calculate the idle time?

 The physical link bandwidth may be ill defined in case of not-quite-

 real network devices like PPP over Ethernet or PPTP over TCP/IP. The

 effective bandwidth in that case is probably determined by the effi?

 ciency of pipes to userspace - which not defined.

 During operations, the effective idletime is measured using an exponen?

 tial weighted moving average (EWMA), which considers recent packets to

 be exponentially more important than past ones. The Unix loadaverage is

 calculated in the same way.

 The calculated idle time is subtracted from the EWMA measured one, the

 resulting number is called 'avgidle'. A perfectly loaded link has an

 avgidle of zero: packets arrive exactly at the calculated interval.

 An overloaded link has a negative avgidle and if it gets too negative,

 CBQ throttles and is then 'overlimit'.

 Conversely, an idle link might amass a huge avgidle, which would then

 allow infinite bandwidths after a few hours of silence. To prevent

 this, avgidle is capped at maxidle.

 If overlimit, in theory, the CBQ could throttle itself for exactly the

 amount of time that was calculated to pass between packets, and then

 pass one packet, and throttle again. Due to timer resolution con?

 straints, this may not be feasible, see the minburst parameter below.

CLASSIFICATION

 Within the one CBQ instance many classes may exist. Each of these Page 2/9

 classes contains another qdisc, by default tc-pfifo(8).

 When enqueueing a packet, CBQ starts at the root and uses various meth?

 ods to determine which class should receive the data. If a verdict is

 reached, this process is repeated for the recipient class which might

 have further means of classifying traffic to its children, if any.

 CBQ has the following methods available to classify a packet to any

 child classes.

 (i) skb->priority class encoding. Can be set from userspace by an

 application with the SO_PRIORITY setsockopt. The skb->priority

 class encoding only applies if the skb->priority holds a ma?

 jor:minor handle of an existing class within this qdisc.

 (ii) tc filters attached to the class.

 (iii) The defmap of a class, as set with the split & defmap parame?

 ters. The defmap may contain instructions for each possible

 Linux packet priority.

 Each class also has a level. Leaf nodes, attached to the bottom of the

 class hierarchy, have a level of 0.

CLASSIFICATION ALGORITHM

 Classification is a loop, which terminates when a leaf class is found.

 At any point the loop may jump to the fallback algorithm.

 The loop consists of the following steps:

 (i) If the packet is generated locally and has a valid classid en?

 coded within its skb->priority, choose it and terminate.

 (ii) Consult the tc filters, if any, attached to this child. If these

 return a class which is not a leaf class, restart loop from the

 class returned. If it is a leaf, choose it and terminate.

 (iii) If the tc filters did not return a class, but did return a clas?

 sid, try to find a class with that id within this qdisc. Check

 if the found class is of a lower level than the current class.

 If so, and the returned class is not a leaf node, restart the

 loop at the found class. If it is a leaf node, terminate. If we

 found an upward reference to a higher level, enter the fallback

 algorithm. Page 3/9

 (iv) If the tc filters did not return a class, nor a valid reference

 to one, consider the minor number of the reference to be the

 priority. Retrieve a class from the defmap of this class for the

 priority. If this did not contain a class, consult the defmap of

 this class for the BEST_EFFORT class. If this is an upward ref?

 erence, or no BEST_EFFORT class was defined, enter the fallback

 algorithm. If a valid class was found, and it is not a leaf

 node, restart the loop at this class. If it is a leaf, choose it

 and terminate. If neither the priority distilled from the clas?

 sid, nor the BEST_EFFORT priority yielded a class, enter the

 fallback algorithm.

 The fallback algorithm resides outside of the loop and is as follows.

 (i) Consult the defmap of the class at which the jump to fallback

 occurred. If the defmap contains a class for the priority of the

 class (which is related to the TOS field), choose this class and

 terminate.

 (ii) Consult the map for a class for the BEST_EFFORT priority. If

 found, choose it, and terminate.

 (iii) Choose the class at which break out to the fallback algorithm

 occurred. Terminate.

 The packet is enqueued to the class which was chosen when either algo?

 rithm terminated. It is therefore possible for a packet to be enqueued

 not at a leaf node, but in the middle of the hierarchy.

LINK SHARING ALGORITHM

 When dequeuing for sending to the network device, CBQ decides which of

 its classes will be allowed to send. It does so with a Weighted Round

 Robin process in which each class with packets gets a chance to send in

 turn. The WRR process starts by asking the highest priority classes

 (lowest numerically - highest semantically) for packets, and will con?

 tinue to do so until they have no more data to offer, in which case the

 process repeats for lower priorities.

 CERTAINTY ENDS HERE, ANK PLEASE HELP

 Each class is not allowed to send at length though - they can only de? Page 4/9

 queue a configurable amount of data during each round.

 If a class is about to go overlimit, and it is not bounded it will try

 to borrow avgidle from siblings that are not isolated. This process is

 repeated from the bottom upwards. If a class is unable to borrow enough

 avgidle to send a packet, it is throttled and not asked for a packet

 for enough time for the avgidle to increase above zero.

 I REALLY NEED HELP FIGURING THIS OUT. REST OF DOCUMENT IS PRETTY CER?

 TAIN AGAIN.

QDISC

 The root qdisc of a CBQ class tree has the following parameters:

 parent major:minor | root

 This mandatory parameter determines the place of the CBQ in?

 stance, either at the root of an interface or within an existing

 class.

 handle major:

 Like all other qdiscs, the CBQ can be assigned a handle. Should

 consist only of a major number, followed by a colon. Optional.

 avpkt bytes

 For calculations, the average packet size must be known. It is

 silently capped at a minimum of 2/3 of the interface MTU. Manda?

 tory.

 bandwidth rate

 To determine the idle time, CBQ must know the bandwidth of your

 underlying physical interface, or parent qdisc. This is a vital

 parameter, more about it later. Mandatory.

 cell The cell size determines he granularity of packet transmission

 time calculations. Has a sensible default.

 mpu A zero sized packet may still take time to transmit. This value

 is the lower cap for packet transmission time calculations -

 packets smaller than this value are still deemed to have this

 size. Defaults to zero.

 ewma log

 When CBQ needs to measure the average idle time, it does so us? Page 5/9

 ing an Exponentially Weighted Moving Average which smooths out

 measurements into a moving average. The EWMA LOG determines how

 much smoothing occurs. Defaults to 5. Lower values imply greater

 sensitivity. Must be between 0 and 31.

 A CBQ qdisc does not shape out of its own accord. It only needs to know

 certain parameters about the underlying link. Actual shaping is done in

 classes.

CLASSES

 Classes have a host of parameters to configure their operation.

 parent major:minor

 Place of this class within the hierarchy. If attached directly

 to a qdisc and not to another class, minor can be omitted.

 Mandatory.

 classid major:minor

 Like qdiscs, classes can be named. The major number must be

 equal to the major number of the qdisc to which it belongs. Op?

 tional, but needed if this class is going to have children.

 weight weight

 When dequeuing to the interface, classes are tried for traffic

 in a round-robin fashion. Classes with a higher configured qdisc

 will generally have more traffic to offer during each round, so

 it makes sense to allow it to dequeue more traffic. All weights

 under a class are normalized, so only the ratios matter. De?

 faults to the configured rate, unless the priority of this class

 is maximal, in which case it is set to 1.

 allot bytes

 Allot specifies how many bytes a qdisc can dequeue during each

 round of the process. This parameter is weighted using the

 renormalized class weight described above.

 priority priority

 In the round-robin process, classes with the lowest priority

 field are tried for packets first. Mandatory.

 rate rate Page 6/9

 Maximum rate this class and all its children combined can send

 at. Mandatory.

 bandwidth rate

 This is different from the bandwidth specified when creating a

 CBQ disc. Only used to determine maxidle and offtime, which are

 only calculated when specifying maxburst or minburst. Mandatory

 if specifying maxburst or minburst.

 maxburst

 This number of packets is used to calculate maxidle so that when

 avgidle is at maxidle, this number of average packets can be

 burst before avgidle drops to 0. Set it higher to be more toler?

 ant of bursts. You can't set maxidle directly, only via this pa?

 rameter.

 minburst

 As mentioned before, CBQ needs to throttle in case of overlimit.

 The ideal solution is to do so for exactly the calculated idle

 time, and pass 1 packet. However, Unix kernels generally have a

 hard time scheduling events shorter than 10ms, so it is better

 to throttle for a longer period, and then pass minburst packets

 in one go, and then sleep minburst times longer.

 The time to wait is called the offtime. Higher values of min?

 burst lead to more accurate shaping in the long term, but to

 bigger bursts at millisecond timescales.

 minidle

 If avgidle is below 0, we are overlimits and need to wait until

 avgidle will be big enough to send one packet. To prevent a sud?

 den burst from shutting down the link for a prolonged period of

 time, avgidle is reset to minidle if it gets too low.

 Minidle is specified in negative microseconds, so 10 means that

 avgidle is capped at -10us.

 bounded

 Signifies that this class will not borrow bandwidth from its

 siblings. Page 7/9

 isolated

 Means that this class will not borrow bandwidth to its siblings

 split major:minor & defmap bitmap[/bitmap]

 If consulting filters attached to a class did not give a ver?

 dict, CBQ can also classify based on the packet's priority.

 There are 16 priorities available, numbered from 0 to 15.

 The defmap specifies which priorities this class wants to re?

 ceive, specified as a bitmap. The Least Significant Bit corre?

 sponds to priority zero. The split parameter tells CBQ at which

 class the decision must be made, which should be a (grand)parent

 of the class you are adding.

 As an example, 'tc class add ... classid 10:1 cbq .. split 10:0

 defmap c0' configures class 10:0 to send packets with priorities

 6 and 7 to 10:1.

 The complimentary configuration would then be: 'tc class add ...

 classid 10:2 cbq ... split 10:0 defmap 3f' Which would send all

 packets 0, 1, 2, 3, 4 and 5 to 10:1.

 estimator interval timeconstant

 CBQ can measure how much bandwidth each class is using, which tc

 filters can use to classify packets with. In order to determine

 the bandwidth it uses a very simple estimator that measures once

 every interval microseconds how much traffic has passed. This

 again is a EWMA, for which the time constant can be specified,

 also in microseconds. The time constant corresponds to the slug?

 gishness of the measurement or, conversely, to the sensitivity

 of the average to short bursts. Higher values mean less sensi?

 tivity.

SOURCES

 o Sally Floyd and Van Jacobson, "Link-sharing and Resource Manage?

 ment Models for Packet Networks", IEEE/ACM Transactions on Net?

 working, Vol.3, No.4, 1995

 o Sally Floyd, "Notes on CBQ and Guarantee Service", 1995

 o Sally Floyd, "Notes on Class-Based Queueing: Setting Parame? Page 8/9

 ters", 1996

 o Sally Floyd and Michael Speer, "Experimental Results for Class-

 Based Queueing", 1998, not published.

SEE ALSO

 tc(8)

AUTHOR

 Alexey N. Kuznetsov, <kuznet@ms2.inr.ac.ru>. This manpage maintained by

 bert hubert <ahu@ds9a.nl>

iproute2 8 December 2001 CBQ(8)

Page 9/9

