
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'tc-bpf.8' command

$ man tc-bpf.8

BPF classifier and actions in tc(8) Linux BPF classifier and actions in tc(8)

NAME

 BPF - BPF programmable classifier and actions for ingress/egress queue?

 ing disciplines

SYNOPSIS

 eBPF classifier (filter) or action:

 tc filter ... bpf [object-file OBJ_FILE] [section CLS_NAME] [ex?

 port UDS_FILE] [verbose] [direct-action | da] [skip_hw | skip_sw

] [police POLICE_SPEC] [action ACTION_SPEC] [classid CLASSID]

 tc action ... bpf [object-file OBJ_FILE] [section CLS_NAME] [ex?

 port UDS_FILE] [verbose]

 cBPF classifier (filter) or action:

 tc filter ... bpf [bytecode-file BPF_FILE | bytecode BPF_BYTECODE] [

 police POLICE_SPEC] [action ACTION_SPEC] [classid CLASSID]

 tc action ... bpf [bytecode-file BPF_FILE | bytecode BPF_BYTECODE]

DESCRIPTION

 Extended Berkeley Packet Filter (eBPF) and classic Berkeley Packet

 Filter (originally known as BPF, for better distinction referred to as

 cBPF here) are both available as a fully programmable and highly effi?

 cient classifier and actions. They both offer a minimal instruction set

 for implementing small programs which can safely be loaded into the

 kernel and thus executed in a tiny virtual machine from kernel space.

 An in-kernel verifier guarantees that a specified program always termi? Page 1/18

 nates and neither crashes nor leaks data from the kernel.

 In Linux, it's generally considered that eBPF is the successor of cBPF.

 The kernel internally transforms cBPF expressions into eBPF expressions

 and executes the latter. Execution of them can be performed in an in?

 terpreter or at setup time, they can be just-in-time compiled (JIT'ed)

 to run as native machine code.

 Currently, the eBPF JIT compiler is available for the following archi?

 tectures:

 * x86_64 (since Linux 3.18)

 * arm64 (since Linux 3.18)

 * s390 (since Linux 4.1)

 * ppc64 (since Linux 4.8)

 * sparc64 (since Linux 4.12)

 * mips64 (since Linux 4.13)

 * arm32 (since Linux 4.14)

 * x86_32 (since Linux 4.18)

 Whereas the following architectures have cBPF, but did not (yet) switch

 to eBPF JIT support:

 * ppc32

 * sparc32

 * mips32

 eBPF's instruction set has similar underlying principles as the cBPF

 instruction set, it however is modelled closer to the underlying archi?

 tecture to better mimic native instruction sets with the aim to achieve

 a better run-time performance. It is designed to be JIT'ed with a one

 to one mapping, which can also open up the possibility for compilers to

 generate optimized eBPF code through an eBPF backend that performs al?

 most as fast as natively compiled code. Given that LLVM provides such

 an eBPF backend, eBPF programs can therefore easily be programmed in a

 subset of the C language. Other than that, eBPF infrastructure also

 comes with a construct called "maps". eBPF maps are key/value stores

 that are shared between multiple eBPF programs, but also between eBPF

 programs and user space applications. Page 2/18

 For the traffic control subsystem, classifier and actions that can be

 attached to ingress and egress qdiscs can be written in eBPF or cBPF.

 The advantage over other classifier and actions is that eBPF/cBPF pro?

 vides the generic framework, while users can implement their highly

 specialized use cases efficiently. This means that the classifier or

 action written that way will not suffer from feature bloat, and can

 therefore execute its task highly efficient. It allows for non-linear

 classification and even merging the action part into the classifica?

 tion. Combined with efficient eBPF map data structures, user space can

 push new policies like classids into the kernel without reloading a

 classifier, or it can gather statistics that are pushed into one map

 and use another one for dynamically load balancing traffic based on the

 determined load, just to provide a few examples.

PARAMETERS

 object-file

 points to an object file that has an executable and linkable format

 (ELF) and contains eBPF opcodes and eBPF map definitions. The LLVM com?

 piler infrastructure with clang(1) as a C language front end is one

 project that supports emitting eBPF object files that can be passed to

 the eBPF classifier (more details in the EXAMPLES section). This option

 is mandatory when an eBPF classifier or action is to be loaded.

 section

 is the name of the ELF section from the object file, where the eBPF

 classifier or action resides. By default the section name for the clas?

 sifier is called "classifier", and for the action "action". Given that

 a single object file can contain multiple classifier and actions, the

 corresponding section name needs to be specified, if it differs from

 the defaults.

 export

 points to a Unix domain socket file. In case the eBPF object file also

 contains a section named "maps" with eBPF map specifications, then the

 map file descriptors can be handed off via the Unix domain socket to an

 eBPF "agent" herding all descriptors after tc lifetime. This can be Page 3/18

 some third party application implementing the IPC counterpart for the

 import, that uses them for calling into bpf(2) system call to read out

 or update eBPF map data from user space, for example, for monitoring

 purposes or to push down new policies.

 verbose

 if set, it will dump the eBPF verifier output, even if loading the eBPF

 program was successful. By default, only on error, the verifier log is

 being emitted to the user.

 direct-action | da

 instructs eBPF classifier to not invoke external TC actions, instead

 use the TC actions return codes (TC_ACT_OK, TC_ACT_SHOT etc.) for clas?

 sifiers.

 skip_hw | skip_sw

 hardware offload control flags. By default TC will try to offload fil?

 ters to hardware if possible. skip_hw explicitly disables the attempt

 to offload. skip_sw forces the offload and disables running the eBPF

 program in the kernel. If hardware offload is not possible and this

 flag was set kernel will report an error and filter will not be in?

 stalled at all.

 police

 is an optional parameter for an eBPF/cBPF classifier that specifies a

 police in tc(1) which is attached to the classifier, for example, on an

 ingress qdisc.

 action

 is an optional parameter for an eBPF/cBPF classifier that specifies a

 subsequent action in tc(1) which is attached to a classifier.

 classid

 flowid

 provides the default traffic control class identifier for this

 eBPF/cBPF classifier. The default class identifier can also be over?

 written by the return code of the eBPF/cBPF program. A default return

 code of -1 specifies the here provided default class identifier to be

 used. A return code of the eBPF/cBPF program of 0 implies that no match Page 4/18

 took place, and a return code other than these two will override the

 default classid. This allows for efficient, non-linear classification

 with only a single eBPF/cBPF program as opposed to having multiple in?

 dividual programs for various class identifiers which would need to

 reparse packet contents.

 bytecode

 is being used for loading cBPF classifier and actions only. The cBPF

 bytecode is directly passed as a text string in the form of 's,c t f

 k,c t f k,c t f k,...' , where s denotes the number of subsequent

 4-tuples. One such 4-tuple consists of c t f k decimals, where c repre?

 sents the cBPF opcode, t the jump true offset target, f the jump false

 offset target and k the immediate constant/literal. There are various

 tools that generate code in this loadable format, for example, bpf_asm

 that ships with the Linux kernel source tree under tools/net/ , so it

 is certainly not expected to hack this by hand. The bytecode or byte?

 code-file option is mandatory when a cBPF classifier or action is to be

 loaded.

 bytecode-file

 also being used to load a cBPF classifier or action. It's effectively

 the same as bytecode only that the cBPF bytecode is not passed directly

 via command line, but rather resides in a text file.

EXAMPLES

 eBPF TOOLING

 A full blown example including eBPF agent code can be found inside the

 iproute2 source package under: examples/bpf/

 As prerequisites, the kernel needs to have the eBPF system call namely

 bpf(2) enabled and ships with cls_bpf and act_bpf kernel modules for

 the traffic control subsystem. To enable eBPF/eBPF JIT support, depend?

 ing which of the two the given architecture supports:

 echo 1 > /proc/sys/net/core/bpf_jit_enable

 A given restricted C file can be compiled via LLVM as:

 clang -O2 -emit-llvm -c bpf.c -o - | llc -march=bpf -filetype=obj

 -o bpf.o Page 5/18

 The compiler invocation might still simplify in future, so for now,

 it's quite handy to alias this construct in one way or another, for ex?

 ample:

 __bcc() {

 clang -O2 -emit-llvm -c $1 -o - | \

 llc -march=bpf -filetype=obj -o "`basename $1 .c`.o"

 }

 alias bcc=__bcc

 A minimal, stand-alone unit, which matches on all traffic with the de?

 fault classid (return code of -1) looks like:

 #include <linux/bpf.h>

 #ifndef __section

 # define __section(x) __attribute__((section(x), used))

 #endif

 __section("classifier") int cls_main(struct __sk_buff *skb)

 {

 return -1;

 }

 char __license[] __section("license") = "GPL";

 More examples can be found further below in subsection eBPF PROGRAMMING

 as focus here will be on tooling.

 There can be various other sections, for example, also for actions.

 Thus, an object file in eBPF can contain multiple entrance points. Al?

 ways a specific entrance point, however, must be specified when config?

 uring with tc. A license must be part of the restricted C code and the

 license string syntax is the same as with Linux kernel modules. The

 kernel reserves its right that some eBPF helper functions can be re?

 stricted to GPL compatible licenses only, and thus may reject a program

 from loading into the kernel when such a license mismatch occurs.

 The resulting object file from the compilation can be inspected with

 the usual set of tools that also operate on normal object files, for

 example objdump(1) for inspecting ELF section headers:

 objdump -h bpf.o Page 6/18

 [...]

 3 classifier 000007f8 0000000000000000 0000000000000000 00000040 2**3

 CONTENTS, ALLOC, LOAD, RELOC, READONLY, CODE

 4 action-mark 00000088 0000000000000000 0000000000000000 00000838 2**3

 CONTENTS, ALLOC, LOAD, RELOC, READONLY, CODE

 5 action-rand 00000098 0000000000000000 0000000000000000 000008c0 2**3

 CONTENTS, ALLOC, LOAD, RELOC, READONLY, CODE

 6 maps 00000030 0000000000000000 0000000000000000 00000958 2**2

 CONTENTS, ALLOC, LOAD, DATA

 7 license 00000004 0000000000000000 0000000000000000 00000988 2**0

 CONTENTS, ALLOC, LOAD, DATA

 [...]

 Adding an eBPF classifier from an object file that contains a classi?

 fier in the default ELF section is trivial (note that instead of "ob?

 ject-file" also shortcuts such as "obj" can be used):

 bcc bpf.c

 tc filter add dev em1 parent 1: bpf obj bpf.o flowid 1:1

 In case the classifier resides in ELF section "mycls", then that same

 command needs to be invoked as:

 tc filter add dev em1 parent 1: bpf obj bpf.o sec mycls flowid 1:1

 Dumping the classifier configuration will tell the location of the

 classifier, in other words that it's from object file "bpf.o" under

 section "mycls":

 tc filter show dev em1

 filter parent 1: protocol all pref 49152 bpf

 filter parent 1: protocol all pref 49152 bpf handle 0x1 flowid 1:1

 bpf.o:[mycls]

 The same program can also be installed on ingress qdisc side as opposed

 to egress ...

 tc qdisc add dev em1 handle ffff: ingress

 tc filter add dev em1 parent ffff: bpf obj bpf.o sec mycls flowid

 ffff:1

 ... and again dumped from there: Page 7/18

 tc filter show dev em1 parent ffff:

 filter protocol all pref 49152 bpf

 filter protocol all pref 49152 bpf handle 0x1 flowid ffff:1

 bpf.o:[mycls]

 Attaching a classifier and action on ingress has the restriction that

 it doesn't have an actual underlying queueing discipline. What ingress

 can do is to classify, mangle, redirect or drop packets. When queueing

 is required on ingress side, then ingress must redirect packets to the

 ifb device, otherwise policing can be used. Moreover, ingress can be

 used to have an early drop point of unwanted packets before they hit

 upper layers of the networking stack, perform network accounting with

 eBPF maps that could be shared with egress, or have an early mangle

 and/or redirection point to different networking devices.

 Multiple eBPF actions and classifier can be placed into a single object

 file within various sections. In that case, non-default section names

 must be provided, which is the case for both actions in this example:

 tc filter add dev em1 parent 1: bpf obj bpf.o flowid 1:1 \

 action bpf obj bpf.o sec action-mark \

 action bpf obj bpf.o sec action-rand ok

 The advantage of this is that the classifier and the two actions can

 then share eBPF maps with each other, if implemented in the programs.

 In order to access eBPF maps from user space beyond tc(8) setup life?

 time, the ownership can be transferred to an eBPF agent via Unix domain

 sockets. There are two possibilities for implementing this:

 1) implementation of an own eBPF agent that takes care of setting up

 the Unix domain socket and implementing the protocol that tc(8) dic?

 tates. A code example of this can be found inside the iproute2 source

 package under: examples/bpf/

 2) use tc exec for transferring the eBPF map file descriptors through a

 Unix domain socket, and spawning an application such as sh(1) . This

 approach's advantage is that tc will place the file descriptors into

 the environment and thus make them available just like stdin, stdout,

 stderr file descriptors, meaning, in case user applications run from Page 8/18

 within this fd-owner shell, they can terminate and restart without los?

 ing eBPF maps file descriptors. Example invocation with the previous

 classifier and action mixture:

 tc exec bpf imp /tmp/bpf

 tc filter add dev em1 parent 1: bpf obj bpf.o exp /tmp/bpf flowid

 1:1 \

 action bpf obj bpf.o sec action-mark \

 action bpf obj bpf.o sec action-rand ok

 Assuming that eBPF maps are shared with classifier and actions, it's

 enough to export them once, for example, from within the classifier or

 action command. tc will setup all eBPF map file descriptors at the time

 when the object file is first parsed.

 When a shell has been spawned, the environment will have a couple of

 eBPF related variables. BPF_NUM_MAPS provides the total number of maps

 that have been transferred over the Unix domain socket. BPF_MAP<X>'s

 value is the file descriptor number that can be accessed in eBPF agent

 applications, in other words, it can directly be used as the file de?

 scriptor value for the bpf(2) system call to retrieve or alter eBPF map

 values. <X> denotes the identifier of the eBPF map. It corresponds to

 the id member of struct bpf_elf_map from the tc eBPF map specifica?

 tion.

 The environment in this example looks as follows:

 sh# env | grep BPF

 BPF_NUM_MAPS=3

 BPF_MAP1=6

 BPF_MAP0=5

 BPF_MAP2=7

 sh# ls -la /proc/self/fd

 [...]

 lrwx------. 1 root root 64 Apr 14 16:46 5 -> anon_inode:bpf-map

 lrwx------. 1 root root 64 Apr 14 16:46 6 -> anon_inode:bpf-map

 lrwx------. 1 root root 64 Apr 14 16:46 7 -> anon_inode:bpf-map

 sh# my_bpf_agent Page 9/18

 eBPF agents are very useful in that they can prepopulate eBPF maps from

 user space, monitor statistics via maps and based on that feedback, for

 example, rewrite classids in eBPF map values during runtime. Given that

 eBPF agents are implemented as normal applications, they can also dy?

 namically receive traffic control policies from external controllers

 and thus push them down into eBPF maps to dynamically adapt to network

 conditions. Moreover, eBPF maps can also be shared with other eBPF pro?

 gram types (e.g. tracing), thus very powerful combination can therefore

 be implemented.

 eBPF PROGRAMMING

 eBPF classifier and actions are being implemented in restricted C syn?

 tax (in future, there could additionally be new language frontends sup?

 ported).

 The header file linux/bpf.h provides eBPF helper functions that can be

 called from an eBPF program. This man page will only provide two mini?

 mal, stand-alone examples, have a look at examples/bpf from the

 iproute2 source package for a fully fledged flow dissector example to

 better demonstrate some of the possibilities with eBPF.

 Supported 32 bit classifier return codes from the C program and their

 meanings:

 0 , denotes a mismatch

 -1 , denotes the default classid configured from the command line

 else , everything else will override the default classid to provide

 a facility for non-linear matching

 Supported 32 bit action return codes from the C program and their mean?

 ings (linux/pkt_cls.h):

 TC_ACT_OK (0) , will terminate the packet processing pipeline and

 allows the packet to proceed

 TC_ACT_SHOT (2) , will terminate the packet processing pipeline and

 drops the packet

 TC_ACT_UNSPEC (-1) , will use the default action configured from tc

 (similarly as returning -1 from a classifier)

 TC_ACT_PIPE (3) , will iterate to the next action, if available Page 10/18

 TC_ACT_RECLASSIFY (1) , will terminate the packet processing pipe?

 line and start classification from the beginning

 else , everything else is an unspecified return code

 Both classifier and action return codes are supported in eBPF and cBPF

 programs.

 To demonstrate restricted C syntax, a minimal toy classifier example is

 provided, which assumes that egress packets, for instance originating

 from a container, have previously been marked in interval [0, 255]. The

 program keeps statistics on different marks for user space and maps the

 classid to the root qdisc with the marking itself as the minor handle:

 #include <stdint.h>

 #include <asm/types.h>

 #include <linux/bpf.h>

 #include <linux/pkt_sched.h>

 #include "helpers.h"

 struct tuple {

 long packets;

 long bytes;

 };

 #define BPF_MAP_ID_STATS 1 /* agent's map identifier */

 #define BPF_MAX_MARK 256

 struct bpf_elf_map __section("maps") map_stats = {

 .type = BPF_MAP_TYPE_ARRAY,

 .id = BPF_MAP_ID_STATS,

 .size_key = sizeof(uint32_t),

 .size_value = sizeof(struct tuple),

 .max_elem = BPF_MAX_MARK,

 .pinning = PIN_GLOBAL_NS,

 };

 static inline void cls_update_stats(const struct __sk_buff *skb,

 uint32_t mark)

 {

 struct tuple *tu; Page 11/18

 tu = bpf_map_lookup_elem(&map_stats, &mark);

 if (likely(tu)) {

 __sync_fetch_and_add(&tu->packets, 1);

 __sync_fetch_and_add(&tu->bytes, skb->len);

 }

 }

 __section("cls") int cls_main(struct __sk_buff *skb)

 {

 uint32_t mark = skb->mark;

 if (unlikely(mark >= BPF_MAX_MARK))

 return 0;

 cls_update_stats(skb, mark);

 return TC_H_MAKE(TC_H_ROOT, mark);

 }

 char __license[] __section("license") = "GPL";

 Another small example is a port redirector which demuxes destination

 port 80 into the interval [8080, 8087] steered by RSS, that can then be

 attached to ingress qdisc. The exercise of adding the egress counter?

 part and IPv6 support is left to the reader:

 #include <asm/types.h>

 #include <asm/byteorder.h>

 #include <linux/bpf.h>

 #include <linux/filter.h>

 #include <linux/in.h>

 #include <linux/if_ether.h>

 #include <linux/ip.h>

 #include <linux/tcp.h>

 #include "helpers.h"

 static inline void set_tcp_dport(struct __sk_buff *skb, int nh_off,

 __u16 old_port, __u16 new_port)

 {

 bpf_l4_csum_replace(skb, nh_off + offsetof(struct tcphdr, check),

 old_port, new_port, sizeof(new_port)); Page 12/18

 bpf_skb_store_bytes(skb, nh_off + offsetof(struct tcphdr, dest),

 &new_port, sizeof(new_port), 0);

 }

 static inline int lb_do_ipv4(struct __sk_buff *skb, int nh_off)

 {

 __u16 dport, dport_new = 8080, off;

 __u8 ip_proto, ip_vl;

 ip_proto = load_byte(skb, nh_off +

 offsetof(struct iphdr, protocol));

 if (ip_proto != IPPROTO_TCP)

 return 0;

 ip_vl = load_byte(skb, nh_off);

 if (likely(ip_vl == 0x45))

 nh_off += sizeof(struct iphdr);

 else

 nh_off += (ip_vl & 0xF) << 2;

 dport = load_half(skb, nh_off + offsetof(struct tcphdr, dest));

 if (dport != 80)

 return 0;

 off = skb->queue_mapping & 7;

 set_tcp_dport(skb, nh_off - BPF_LL_OFF, __constant_htons(80),

 __cpu_to_be16(dport_new + off));

 return -1;

 }

 __section("lb") int lb_main(struct __sk_buff *skb)

 {

 int ret = 0, nh_off = BPF_LL_OFF + ETH_HLEN;

 if (likely(skb->protocol == __constant_htons(ETH_P_IP)))

 ret = lb_do_ipv4(skb, nh_off);

 return ret;

 }

 char __license[] __section("license") = "GPL";

 The related helper header file helpers.h in both examples was: Page 13/18

 /* Misc helper macros. */

 #define __section(x) __attribute__((section(x), used))

 #define offsetof(x, y) __builtin_offsetof(x, y)

 #define likely(x) __builtin_expect(!!(x), 1)

 #define unlikely(x) __builtin_expect(!!(x), 0)

 /* Object pinning settings */

 #define PIN_NONE 0

 #define PIN_OBJECT_NS 1

 #define PIN_GLOBAL_NS 2

 /* ELF map definition */

 struct bpf_elf_map {

 __u32 type;

 __u32 size_key;

 __u32 size_value;

 __u32 max_elem;

 __u32 flags;

 __u32 id;

 __u32 pinning;

 __u32 inner_id;

 __u32 inner_idx;

 };

 /* Some used BPF function calls. */

 static int (*bpf_skb_store_bytes)(void *ctx, int off, void *from,

 int len, int flags) =

 (void *) BPF_FUNC_skb_store_bytes;

 static int (*bpf_l4_csum_replace)(void *ctx, int off, int from,

 int to, int flags) =

 (void *) BPF_FUNC_l4_csum_replace;

 static void *(*bpf_map_lookup_elem)(void *map, void *key) =

 (void *) BPF_FUNC_map_lookup_elem;

 /* Some used BPF intrinsics. */

 unsigned long long load_byte(void *skb, unsigned long long off)

 asm ("llvm.bpf.load.byte"); Page 14/18

 unsigned long long load_half(void *skb, unsigned long long off)

 asm ("llvm.bpf.load.half");

 Best practice, we recommend to only have a single eBPF classifier

 loaded in tc and perform all necessary matching and mangling from there

 instead of a list of individual classifier and separate actions. Just a

 single classifier tailored for a given use-case will be most efficient

 to run.

 eBPF DEBUGGING

 Both tc filter and action commands for bpf support an optional verbose

 parameter that can be used to inspect the eBPF verifier log. It is

 dumped by default in case of an error.

 In case the eBPF/cBPF JIT compiler has been enabled, it can also be in?

 structed to emit a debug output of the resulting opcode image into the

 kernel log, which can be read via dmesg(1) :

 echo 2 > /proc/sys/net/core/bpf_jit_enable

 The Linux kernel source tree ships additionally under tools/net/ a

 small helper called bpf_jit_disasm that reads out the opcode image dump

 from the kernel log and dumps the resulting disassembly:

 bpf_jit_disasm -o

 Other than that, the Linux kernel also contains an extensive eBPF/cBPF

 test suite module called test_bpf . Upon ...

 modprobe test_bpf

 ... it performs a diversity of test cases and dumps the results into

 the kernel log that can be inspected with dmesg(1) . The results can

 differ depending on whether the JIT compiler is enabled or not. In case

 of failed test cases, the module will fail to load. In such cases, we

 urge you to file a bug report to the related JIT authors, Linux kernel

 and networking mailing lists.

 cBPF

 Although we generally recommend switching to implementing eBPF classi?

 fier and actions, for the sake of completeness, a few words on how to

 program in cBPF will be lost here.

 Likewise, the bpf_jit_enable switch can be enabled as mentioned al? Page 15/18

 ready. Tooling such as bpf_jit_disasm is also independent whether eBPF

 or cBPF code is being loaded.

 Unlike in eBPF, classifier and action are not implemented in restricted

 C, but rather in a minimal assembler-like language or with the help of

 other tooling.

 The raw interface with tc takes opcodes directly. For example, the most

 minimal classifier matching on every packet resulting in the default

 classid of 1:1 looks like:

 tc filter add dev em1 parent 1: bpf bytecode '1,6 0 0 4294967295,'

 flowid 1:1

 The first decimal of the bytecode sequence denotes the number of subse?

 quent 4-tuples of cBPF opcodes. As mentioned, such a 4-tuple consists

 of c t f k decimals, where c represents the cBPF opcode, t the jump

 true offset target, f the jump false offset target and k the immediate

 constant/literal. Here, this denotes an unconditional return from the

 program with immediate value of -1.

 Thus, for egress classification, Willem de Bruijn implemented a minimal

 stand-alone helper tool under the GNU General Public License version 2

 for iptables(8) BPF extension, which abuses the libpcap internal clas?

 sic BPF compiler, his code derived here for usage with tc(8) :

 #include <pcap.h>

 #include <stdio.h>

 int main(int argc, char **argv)

 {

 struct bpf_program prog;

 struct bpf_insn *ins;

 int i, ret, dlt = DLT_RAW;

 if (argc < 2 || argc > 3)

 return 1;

 if (argc == 3) {

 dlt = pcap_datalink_name_to_val(argv[1]);

 if (dlt == -1)

 return 1; Page 16/18

 }

 ret = pcap_compile_nopcap(-1, dlt, &prog, argv[argc - 1],

 1, PCAP_NETMASK_UNKNOWN);

 if (ret)

 return 1;

 printf("%d,", prog.bf_len);

 ins = prog.bf_insns;

 for (i = 0; i < prog.bf_len - 1; ++ins, ++i)

 printf("%u %u %u %u,", ins->code,

 ins->jt, ins->jf, ins->k);

 printf("%u %u %u %u",

 ins->code, ins->jt, ins->jf, ins->k);

 pcap_freecode(&prog);

 return 0;

 }

 Given this small helper, any tcpdump(8) filter expression can be abused

 as a classifier where a match will result in the default classid:

 bpftool EN10MB 'tcp[tcpflags] & tcp-syn != 0' > /var/bpf/tcp-syn

 tc filter add dev em1 parent 1: bpf bytecode-file /var/bpf/tcp-syn

 flowid 1:1

 Basically, such a minimal generator is equivalent to:

 tcpdump -iem1 -ddd 'tcp[tcpflags] & tcp-syn != 0' | tr '\n' ',' >

 /var/bpf/tcp-syn

 Since libpcap does not support all Linux' specific cBPF extensions in

 its compiler, the Linux kernel also ships under tools/net/ a minimal

 BPF assembler called bpf_asm for providing full control. For detailed

 syntax and semantics on implementing such programs by hand, see refer?

 ences under FURTHER READING .

 Trivial toy example in bpf_asm for classifying IPv4/TCP packets, saved

 in a text file called foobar :

 ldh [12]

 jne #0x800, drop

 ldb [23] Page 17/18

 jneq #6, drop

 ret #-1

 drop: ret #0

 Similarly, such a classifier can be loaded as:

 bpf_asm foobar > /var/bpf/tcp-syn

 tc filter add dev em1 parent 1: bpf bytecode-file /var/bpf/tcp-syn

 flowid 1:1

 For BPF classifiers, the Linux kernel provides additionally under

 tools/net/ a small BPF debugger called bpf_dbg , which can be used to

 test a classifier against pcap files, single-step or add various break?

 points into the classifier program and dump register contents during

 runtime.

 Implementing an action in classic BPF is rather limited in the sense

 that packet mangling is not supported. Therefore, it's generally recom?

 mended to make the switch to eBPF, whenever possible.

FURTHER READING

 Further and more technical details about the BPF architecture can be

 found in the Linux kernel source tree under Documentation/network?

 ing/filter.txt .

 Further details on eBPF tc(8) examples can be found in the iproute2

 source tree under examples/bpf/ .

SEE ALSO

 tc(8), tc-ematch(8) bpf(2) bpf(4)

AUTHORS

 Manpage written by Daniel Borkmann.

 Please report corrections or improvements to the Linux kernel network?

 ing mailing list: <netdev@vger.kernel.org>

iproute2 18 May 20BPF classifier and actions in tc(8)

Page 18/18

