
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'systemd.resource-control.5' command

$ man systemd.resource-control.5

SYSTEMD.RESOURCE-CONTROL(5)systemd.resource-controlSYSTEMD.RESOURCE-CONTROL(5)

NAME

 systemd.resource-control - Resource control unit settings

SYNOPSIS

 slice.slice, scope.scope, service.service, socket.socket, mount.mount,

 swap.swap

DESCRIPTION

 Unit configuration files for services, slices, scopes, sockets, mount

 points, and swap devices share a subset of configuration options for

 resource control of spawned processes. Internally, this relies on the

 Linux Control Groups (cgroups) kernel concept for organizing processes

 in a hierarchical tree of named groups for the purpose of resource

 management.

 This man page lists the configuration options shared by those six unit

 types. See systemd.unit(5) for the common options of all unit

 configuration files, and systemd.slice(5), systemd.scope(5),

 systemd.service(5), systemd.socket(5), systemd.mount(5), and

 systemd.swap(5) for more information on the specific unit configuration

 files. The resource control configuration options are configured in the

 [Slice], [Scope], [Service], [Socket], [Mount], or [Swap] sections,

 depending on the unit type.

 In addition, options which control resources available to programs

 executed by systemd are listed in systemd.exec(5). Those options Page 1/25

 complement options listed here.

 See the New Control Group Interfaces[1] for an introduction on how to

 make use of resource control APIs from programs.

 Setting resource controls for a group of related units

 As described in systemd.unit(5), the settings listed here may be set

 through the main file of a unit and drop-in snippets in *.d/

 directories. The list of directories searched for drop-ins includes

 names formed by repeatedly truncating the unit name after all dashes.

 This is particularly convenient to set resource limits for a group of

 units with similar names.

 For example, every user gets their own slice user-nnn.slice. Drop-ins

 with local configuration that affect user 1000 may be placed in

 /etc/systemd/system/user-1000.slice,

 /etc/systemd/system/user-1000.slice.d/*.conf, but also

 /etc/systemd/system/user-.slice.d/*.conf. This last directory applies

 to all user slices.

IMPLICIT DEPENDENCIES

 The following dependencies are implicitly added:

 ? Units with the Slice= setting set automatically acquire Requires=

 and After= dependencies on the specified slice unit.

OPTIONS

 Units of the types listed above can have settings for resource control

 configuration:

 CPUAccounting=

 Turn on CPU usage accounting for this unit. Takes a boolean

 argument. Note that turning on CPU accounting for one unit will

 also implicitly turn it on for all units contained in the same

 slice and for all its parent slices and the units contained

 therein. The system default for this setting may be controlled with

 DefaultCPUAccounting= in systemd-system.conf(5).

 CPUWeight=weight, StartupCPUWeight=weight

 These options accept an integer value or a the special string

 "idle": Page 2/25

 ? If set to an integer value, assign the specified CPU time

 weight to the processes executed, if the unified control group

 hierarchy is used on the system. These options control the

 "cpu.weight" control group attribute. The allowed range is 1 to

 10000. Defaults to 100. For details about this control group

 attribute, see Control Groups v2[2] and CFS Scheduler[3]. The

 available CPU time is split up among all units within one slice

 relative to their CPU time weight. A higher weight means more

 CPU time, a lower weight means less.

 ? If set to the special string "idle", mark the cgroup for "idle

 scheduling", which means that it will get CPU resources only

 when there are no processes not marked in this way to execute

 in this cgroup or its siblings. This setting corresponds to the

 "cpu.idle" cgroup attribute.

 Note that this value only has an effect on cgroup-v2, for

 cgroup-v1 it is equivalent to the minimum weight.

 While StartupCPUWeight= applies to the startup and shutdown phases

 of the system, CPUWeight= applies to normal runtime of the system,

 and if the former is not set also to the startup and shutdown

 phases. Using StartupCPUWeight= allows prioritizing specific

 services at boot-up and shutdown differently than during normal

 runtime.

 CPUQuota=

 Assign the specified CPU time quota to the processes executed.

 Takes a percentage value, suffixed with "%". The percentage

 specifies how much CPU time the unit shall get at maximum, relative

 to the total CPU time available on one CPU. Use values > 100% for

 allotting CPU time on more than one CPU. This controls the

 "cpu.max" attribute on the unified control group hierarchy and

 "cpu.cfs_quota_us" on legacy. For details about these control group

 attributes, see Control Groups v2[2] and CFS Bandwidth Control[4].

 Setting CPUQuota= to an empty value unsets the quota.

 Example: CPUQuota=20% ensures that the executed processes will Page 3/25

 never get more than 20% CPU time on one CPU.

 CPUQuotaPeriodSec=

 Assign the duration over which the CPU time quota specified by

 CPUQuota= is measured. Takes a time duration value in seconds, with

 an optional suffix such as "ms" for milliseconds (or "s" for

 seconds.) The default setting is 100ms. The period is clamped to

 the range supported by the kernel, which is [1ms, 1000ms].

 Additionally, the period is adjusted up so that the quota interval

 is also at least 1ms. Setting CPUQuotaPeriodSec= to an empty value

 resets it to the default.

 This controls the second field of "cpu.max" attribute on the

 unified control group hierarchy and "cpu.cfs_period_us" on legacy.

 For details about these control group attributes, see Control

 Groups v2[2] and CFS Scheduler[3].

 Example: CPUQuotaPeriodSec=10ms to request that the CPU quota is

 measured in periods of 10ms.

 AllowedCPUs=, StartupAllowedCPUs=

 Restrict processes to be executed on specific CPUs. Takes a list of

 CPU indices or ranges separated by either whitespace or commas. CPU

 ranges are specified by the lower and upper CPU indices separated

 by a dash.

 Setting AllowedCPUs= or StartupAllowedCPUs= doesn't guarantee that

 all of the CPUs will be used by the processes as it may be limited

 by parent units. The effective configuration is reported as

 EffectiveCPUs=.

 While StartupAllowedCPUs= applies to the startup and shutdown

 phases of the system, AllowedCPUs= applies to normal runtime of the

 system, and if the former is not set also to the startup and

 shutdown phases. Using StartupAllowedCPUs= allows prioritizing

 specific services at boot-up and shutdown differently than during

 normal runtime.

 This setting is supported only with the unified control group

 hierarchy. Page 4/25

 AllowedMemoryNodes=, StartupAllowedMemoryNodes=

 Restrict processes to be executed on specific memory NUMA nodes.

 Takes a list of memory NUMA nodes indices or ranges separated by

 either whitespace or commas. Memory NUMA nodes ranges are specified

 by the lower and upper NUMA nodes indices separated by a dash.

 Setting AllowedMemoryNodes= or StartupAllowedMemoryNodes= doesn't

 guarantee that all of the memory NUMA nodes will be used by the

 processes as it may be limited by parent units. The effective

 configuration is reported as EffectiveMemoryNodes=.

 While StartupAllowedMemoryNodes= applies to the startup and

 shutdown phases of the system, AllowedMemoryNodes= applies to

 normal runtime of the system, and if the former is not set also to

 the startup and shutdown phases. Using StartupAllowedMemoryNodes=

 allows prioritizing specific services at boot-up and shutdown

 differently than during normal runtime.

 This setting is supported only with the unified control group

 hierarchy.

 MemoryAccounting=

 Turn on process and kernel memory accounting for this unit. Takes a

 boolean argument. Note that turning on memory accounting for one

 unit will also implicitly turn it on for all units contained in the

 same slice and for all its parent slices and the units contained

 therein. The system default for this setting may be controlled with

 DefaultMemoryAccounting= in systemd-system.conf(5).

 MemoryMin=bytes, MemoryLow=bytes

 Specify the memory usage protection of the executed processes in

 this unit. When reclaiming memory, the unit is treated as if it was

 using less memory resulting in memory to be preferentially

 reclaimed from unprotected units. Using MemoryLow= results in a

 weaker protection where memory may still be reclaimed to avoid

 invoking the OOM killer in case there is no other reclaimable

 memory.

 For a protection to be effective, it is generally required to set a Page 5/25

 corresponding allocation on all ancestors, which is then

 distributed between children (with the exception of the root

 slice). Any MemoryMin= or MemoryLow= allocation that is not

 explicitly distributed to specific children is used to create a

 shared protection for all children. As this is a shared protection,

 the children will freely compete for the memory.

 Takes a memory size in bytes. If the value is suffixed with K, M, G

 or T, the specified memory size is parsed as Kilobytes, Megabytes,

 Gigabytes, or Terabytes (with the base 1024), respectively.

 Alternatively, a percentage value may be specified, which is taken

 relative to the installed physical memory on the system. If

 assigned the special value "infinity", all available memory is

 protected, which may be useful in order to always inherit all of

 the protection afforded by ancestors. This controls the

 "memory.min" or "memory.low" control group attribute. For details

 about this control group attribute, see Memory Interface Files[5].

 Units may have their children use a default "memory.min" or

 "memory.low" value by specifying DefaultMemoryMin= or

 DefaultMemoryLow=, which has the same semantics as MemoryMin= and

 MemoryLow=. This setting does not affect "memory.min" or

 "memory.low" in the unit itself. Using it to set a default child

 allocation is only useful on kernels older than 5.7, which do not

 support the "memory_recursiveprot" cgroup2 mount option.

 MemoryHigh=bytes

 Specify the throttling limit on memory usage of the executed

 processes in this unit. Memory usage may go above the limit if

 unavoidable, but the processes are heavily slowed down and memory

 is taken away aggressively in such cases. This is the main

 mechanism to control memory usage of a unit.

 Takes a memory size in bytes. If the value is suffixed with K, M, G

 or T, the specified memory size is parsed as Kilobytes, Megabytes,

 Gigabytes, or Terabytes (with the base 1024), respectively.

 Alternatively, a percentage value may be specified, which is taken Page 6/25

 relative to the installed physical memory on the system. If

 assigned the special value "infinity", no memory throttling is

 applied. This controls the "memory.high" control group attribute.

 For details about this control group attribute, see Memory

 Interface Files[5].

 MemoryMax=bytes

 Specify the absolute limit on memory usage of the executed

 processes in this unit. If memory usage cannot be contained under

 the limit, out-of-memory killer is invoked inside the unit. It is

 recommended to use MemoryHigh= as the main control mechanism and

 use MemoryMax= as the last line of defense.

 Takes a memory size in bytes. If the value is suffixed with K, M, G

 or T, the specified memory size is parsed as Kilobytes, Megabytes,

 Gigabytes, or Terabytes (with the base 1024), respectively.

 Alternatively, a percentage value may be specified, which is taken

 relative to the installed physical memory on the system. If

 assigned the special value "infinity", no memory limit is applied.

 This controls the "memory.max" control group attribute. For details

 about this control group attribute, see Memory Interface Files[5].

 MemorySwapMax=bytes

 Specify the absolute limit on swap usage of the executed processes

 in this unit.

 Takes a swap size in bytes. If the value is suffixed with K, M, G

 or T, the specified swap size is parsed as Kilobytes, Megabytes,

 Gigabytes, or Terabytes (with the base 1024), respectively. If

 assigned the special value "infinity", no swap limit is applied.

 This controls the "memory.swap.max" control group attribute. For

 details about this control group attribute, see Memory Interface

 Files[5].

 TasksAccounting=

 Turn on task accounting for this unit. Takes a boolean argument. If

 enabled, the system manager will keep track of the number of tasks

 in the unit. The number of tasks accounted this way includes both Page 7/25

 kernel threads and userspace processes, with each thread counting

 individually. Note that turning on tasks accounting for one unit

 will also implicitly turn it on for all units contained in the same

 slice and for all its parent slices and the units contained

 therein. The system default for this setting may be controlled with

 DefaultTasksAccounting= in systemd-system.conf(5).

 TasksMax=N

 Specify the maximum number of tasks that may be created in the

 unit. This ensures that the number of tasks accounted for the unit

 (see above) stays below a specific limit. This either takes an

 absolute number of tasks or a percentage value that is taken

 relative to the configured maximum number of tasks on the system.

 If assigned the special value "infinity", no tasks limit is

 applied. This controls the "pids.max" control group attribute. For

 details about this control group attribute, the pids controller[6].

 The system default for this setting may be controlled with

 DefaultTasksMax= in systemd-system.conf(5).

 IOAccounting=

 Turn on Block I/O accounting for this unit, if the unified control

 group hierarchy is used on the system. Takes a boolean argument.

 Note that turning on block I/O accounting for one unit will also

 implicitly turn it on for all units contained in the same slice and

 all for its parent slices and the units contained therein. The

 system default for this setting may be controlled with

 DefaultIOAccounting= in systemd-system.conf(5).

 IOWeight=weight, StartupIOWeight=weight

 Set the default overall block I/O weight for the executed

 processes, if the unified control group hierarchy is used on the

 system. Takes a single weight value (between 1 and 10000) to set

 the default block I/O weight. This controls the "io.weight" control

 group attribute, which defaults to 100. For details about this

 control group attribute, see IO Interface Files[7]. The available

 I/O bandwidth is split up among all units within one slice relative Page 8/25

 to their block I/O weight. A higher weight means more I/O

 bandwidth, a lower weight means less.

 While StartupIOWeight= applies to the startup and shutdown phases

 of the system, IOWeight= applies to the later runtime of the

 system, and if the former is not set also to the startup and

 shutdown phases. This allows prioritizing specific services at

 boot-up and shutdown differently than during runtime.

 IODeviceWeight=device weight

 Set the per-device overall block I/O weight for the executed

 processes, if the unified control group hierarchy is used on the

 system. Takes a space-separated pair of a file path and a weight

 value to specify the device specific weight value, between 1 and

 10000. (Example: "/dev/sda 1000"). The file path may be specified

 as path to a block device node or as any other file, in which case

 the backing block device of the file system of the file is

 determined. This controls the "io.weight" control group attribute,

 which defaults to 100. Use this option multiple times to set

 weights for multiple devices. For details about this control group

 attribute, see IO Interface Files[7].

 The specified device node should reference a block device that has

 an I/O scheduler associated, i.e. should not refer to partition or

 loopback block devices, but to the originating, physical device.

 When a path to a regular file or directory is specified it is

 attempted to discover the correct originating device backing the

 file system of the specified path. This works correctly only for

 simpler cases, where the file system is directly placed on a

 partition or physical block device, or where simple 1:1 encryption

 using dm-crypt/LUKS is used. This discovery does not cover complex

 storage and in particular RAID and volume management storage

 devices.

 IOReadBandwidthMax=device bytes, IOWriteBandwidthMax=device bytes

 Set the per-device overall block I/O bandwidth maximum limit for

 the executed processes, if the unified control group hierarchy is Page 9/25

 used on the system. This limit is not work-conserving and the

 executed processes are not allowed to use more even if the device

 has idle capacity. Takes a space-separated pair of a file path and

 a bandwidth value (in bytes per second) to specify the device

 specific bandwidth. The file path may be a path to a block device

 node, or as any other file in which case the backing block device

 of the file system of the file is used. If the bandwidth is

 suffixed with K, M, G, or T, the specified bandwidth is parsed as

 Kilobytes, Megabytes, Gigabytes, or Terabytes, respectively, to the

 base of 1000. (Example:

 "/dev/disk/by-path/pci-0000:00:1f.2-scsi-0:0:0:0 5M"). This

 controls the "io.max" control group attributes. Use this option

 multiple times to set bandwidth limits for multiple devices. For

 details about this control group attribute, see IO Interface

 Files[7].

 Similar restrictions on block device discovery as for

 IODeviceWeight= apply, see above.

 IOReadIOPSMax=device IOPS, IOWriteIOPSMax=device IOPS

 Set the per-device overall block I/O IOs-Per-Second maximum limit

 for the executed processes, if the unified control group hierarchy

 is used on the system. This limit is not work-conserving and the

 executed processes are not allowed to use more even if the device

 has idle capacity. Takes a space-separated pair of a file path and

 an IOPS value to specify the device specific IOPS. The file path

 may be a path to a block device node, or as any other file in which

 case the backing block device of the file system of the file is

 used. If the IOPS is suffixed with K, M, G, or T, the specified

 IOPS is parsed as KiloIOPS, MegaIOPS, GigaIOPS, or TeraIOPS,

 respectively, to the base of 1000. (Example:

 "/dev/disk/by-path/pci-0000:00:1f.2-scsi-0:0:0:0 1K"). This

 controls the "io.max" control group attributes. Use this option

 multiple times to set IOPS limits for multiple devices. For details

 about this control group attribute, see IO Interface Files[7]. Page 10/25

 Similar restrictions on block device discovery as for

 IODeviceWeight= apply, see above.

 IODeviceLatencyTargetSec=device target

 Set the per-device average target I/O latency for the executed

 processes, if the unified control group hierarchy is used on the

 system. Takes a file path and a timespan separated by a space to

 specify the device specific latency target. (Example: "/dev/sda

 25ms"). The file path may be specified as path to a block device

 node or as any other file, in which case the backing block device

 of the file system of the file is determined. This controls the

 "io.latency" control group attribute. Use this option multiple

 times to set latency target for multiple devices. For details about

 this control group attribute, see IO Interface Files[7].

 Implies "IOAccounting=yes".

 These settings are supported only if the unified control group

 hierarchy is used.

 Similar restrictions on block device discovery as for

 IODeviceWeight= apply, see above.

 IPAccounting=

 Takes a boolean argument. If true, turns on IPv4 and IPv6 network

 traffic accounting for packets sent or received by the unit. When

 this option is turned on, all IPv4 and IPv6 sockets created by any

 process of the unit are accounted for.

 When this option is used in socket units, it applies to all IPv4

 and IPv6 sockets associated with it (including both listening and

 connection sockets where this applies). Note that for

 socket-activated services, this configuration setting and the

 accounting data of the service unit and the socket unit are kept

 separate, and displayed separately. No propagation of the setting

 and the collected statistics is done, in either direction.

 Moreover, any traffic sent or received on any of the socket unit's

 sockets is accounted to the socket unit ? and never to the service

 unit it might have activated, even if the socket is used by it. Page 11/25

 The system default for this setting may be controlled with

 DefaultIPAccounting= in systemd-system.conf(5).

 IPAddressAllow=ADDRESS[/PREFIXLENGTH]...,

 IPAddressDeny=ADDRESS[/PREFIXLENGTH]...

 Turn on network traffic filtering for IP packets sent and received

 over AF_INET and AF_INET6 sockets. Both directives take a space

 separated list of IPv4 or IPv6 addresses, each optionally suffixed

 with an address prefix length in bits after a "/" character. If the

 suffix is omitted, the address is considered a host address, i.e.

 the filter covers the whole address (32 bits for IPv4, 128 bits for

 IPv6).

 The access lists configured with this option are applied to all

 sockets created by processes of this unit (or in the case of socket

 units, associated with it). The lists are implicitly combined with

 any lists configured for any of the parent slice units this unit

 might be a member of. By default both access lists are empty. Both

 ingress and egress traffic is filtered by these settings. In case

 of ingress traffic the source IP address is checked against these

 access lists, in case of egress traffic the destination IP address

 is checked. The following rules are applied in turn:

 ? Access is granted when the checked IP address matches an entry

 in the IPAddressAllow= list.

 ? Otherwise, access is denied when the checked IP address matches

 an entry in the IPAddressDeny= list.

 ? Otherwise, access is granted.

 In order to implement an allow-listing IP firewall, it is

 recommended to use a IPAddressDeny=any setting on an upper-level

 slice unit (such as the root slice -.slice or the slice containing

 all system services system.slice ? see systemd.special(7) for

 details on these slice units), plus individual per-service

 IPAddressAllow= lines permitting network access to relevant

 services, and only them.

 Note that for socket-activated services, the IP access list Page 12/25

 configured on the socket unit applies to all sockets associated

 with it directly, but not to any sockets created by the ultimately

 activated services for it. Conversely, the IP access list

 configured for the service is not applied to any sockets passed

 into the service via socket activation. Thus, it is usually a good

 idea to replicate the IP access lists on both the socket and the

 service unit. Nevertheless, it may make sense to maintain one list

 more open and the other one more restricted, depending on the

 usecase.

 If these settings are used multiple times in the same unit the

 specified lists are combined. If an empty string is assigned to

 these settings the specific access list is reset and all previous

 settings undone.

 In place of explicit IPv4 or IPv6 address and prefix length

 specifications a small set of symbolic names may be used. The

 following names are defined:

 Table 1. Special address/network names

 ??

 ?Symbolic Name ? Definition ? Meaning ?

 ??

 ?any ? 0.0.0.0/0 ::/0 ? Any host ?

 ??

 ?localhost ? 127.0.0.0/8 ::1/128 ? All addresses on ?

 ? ? ? the local loopback ?

 ??

 ?link-local ? 169.254.0.0/16 ? All link-local IP ?

 ? ? fe80::/64 ? addresses ?

 ??

 ?multicast ? 224.0.0.0/4 ? All IP multicasting ?

 ? ? ff00::/8 ? addresses ?

 ??

 Note that these settings might not be supported on some systems

 (for example if eBPF control group support is not enabled in the Page 13/25

 underlying kernel or container manager). These settings will have

 no effect in that case. If compatibility with such systems is

 desired it is hence recommended to not exclusively rely on them for

 IP security.

 IPIngressFilterPath=BPF_FS_PROGRAM_PATH,

 IPEgressFilterPath=BPF_FS_PROGRAM_PATH

 Add custom network traffic filters implemented as BPF programs,

 applying to all IP packets sent and received over AF_INET and

 AF_INET6 sockets. Takes an absolute path to a pinned BPF program in

 the BPF virtual filesystem (/sys/fs/bpf/).

 The filters configured with this option are applied to all sockets

 created by processes of this unit (or in the case of socket units,

 associated with it). The filters are loaded in addition to filters

 any of the parent slice units this unit might be a member of as

 well as any IPAddressAllow= and IPAddressDeny= filters in any of

 these units. By default there are no filters specified.

 If these settings are used multiple times in the same unit all the

 specified programs are attached. If an empty string is assigned to

 these settings the program list is reset and all previous specified

 programs ignored.

 If the path BPF_FS_PROGRAM_PATH in IPIngressFilterPath= assignment

 is already being handled by BPFProgram= ingress hook, e.g.

 BPFProgram=ingress:BPF_FS_PROGRAM_PATH, the assignment will be

 still considered valid and the program will be attached to a

 cgroup. Same for IPEgressFilterPath= path and egress hook.

 Note that for socket-activated services, the IP filter programs

 configured on the socket unit apply to all sockets associated with

 it directly, but not to any sockets created by the ultimately

 activated services for it. Conversely, the IP filter programs

 configured for the service are not applied to any sockets passed

 into the service via socket activation. Thus, it is usually a good

 idea, to replicate the IP filter programs on both the socket and

 the service unit, however it often makes sense to maintain one Page 14/25

 configuration more open and the other one more restricted,

 depending on the usecase.

 Note that these settings might not be supported on some systems

 (for example if eBPF control group support is not enabled in the

 underlying kernel or container manager). These settings will fail

 the service in that case. If compatibility with such systems is

 desired it is hence recommended to attach your filter manually

 (requires Delegate=yes) instead of using this setting.

 BPFProgram=type:program-path

 Add a custom cgroup BPF program.

 BPFProgram= allows attaching BPF hooks to the cgroup of a systemd

 unit. (This generalizes the functionality exposed via

 IPEgressFilterPath= for egress and IPIngressFilterPath= for

 ingress.) Cgroup-bpf hooks in the form of BPF programs loaded to

 the BPF filesystem are attached with cgroup-bpf attach flags

 determined by the unit. For details about attachment types and

 flags see

 https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/plain/include/uapi/linux/bpf.h.

 For general BPF documentation please refer to

 https://docs.kernel.org/bpf/index.html.

 The specification of BPF program consists of a type followed by a

 program-path with ":" as the separator: type:program-path.

 type is the string name of BPF attach type also used in bpftool.

 type can be one of egress, ingress, sock_create, sock_ops, device,

 bind4, bind6, connect4, connect6, post_bind4, post_bind6, sendmsg4,

 sendmsg6, sysctl, recvmsg4, recvmsg6, getsockopt, setsockopt.

 Setting BPFProgram= to an empty value makes previous assignments

 ineffective.

 Multiple assignments of the same type:program-path value have the

 same effect as a single assignment: the program with the path

 program-path will be attached to cgroup hook type just once.

 If BPF egress pinned to program-path path is already being handled

 by IPEgressFilterPath=, BPFProgram= assignment will be considered Page 15/25

 valid and BPFProgram= will be attached to a cgroup. Similarly for

 ingress hook and IPIngressFilterPath= assignment.

 BPF programs passed with BPFProgram= are attached to the cgroup of

 a unit with BPF attach flag multi, that allows further attachments

 of the same type within cgroup hierarchy topped by the unit cgroup.

 Examples:

 BPFProgram=egress:/sys/fs/bpf/egress-hook

 BPFProgram=bind6:/sys/fs/bpf/sock-addr-hook

 SocketBindAllow=bind-rule, SocketBindDeny=bind-rule

 Allow or deny binding a socket address to a socket by matching it

 with the bind-rule and applying a corresponding action if there is

 a match.

 bind-rule describes socket properties such as address-family,

 transport-protocol and ip-ports.

 bind-rule := { [address-family:][transport-protocol:][ip-ports] |

 any }

 address-family := { ipv4 | ipv6 }

 transport-protocol := { tcp | udp }

 ip-ports := { ip-port | ip-port-range }

 An optional address-family expects ipv4 or ipv6 values. If not

 specified, a rule will be matched for both IPv4 and IPv6 addresses

 and applied depending on other socket fields, e.g.

 transport-protocol, ip-port.

 An optional transport-protocol expects tcp or udp transport

 protocol names. If not specified, a rule will be matched for any

 transport protocol.

 An optional ip-port value must lie within 1...65535 interval

 inclusively, i.e. dynamic port 0 is not allowed. A range of

 sequential ports is described by ip-port-range :=

 ip-port-low-ip-port-high, where ip-port-low is smaller than or

 equal to ip-port-high and both are within 1...65535 inclusively.

 A special value any can be used to apply a rule to any address

 family, transport protocol and any port with a positive value. Page 16/25

 To allow multiple rules assign SocketBindAllow= or SocketBindDeny=

 multiple times. To clear the existing assignments pass an empty

 SocketBindAllow= or SocketBindDeny= assignment.

 For each of SocketBindAllow= and SocketBindDeny=, maximum allowed

 number of assignments is 128.

 ? Binding to a socket is allowed when a socket address matches an

 entry in the SocketBindAllow= list.

 ? Otherwise, binding is denied when the socket address matches an

 entry in the SocketBindDeny= list.

 ? Otherwise, binding is allowed.

 The feature is implemented with cgroup/bind4 and cgroup/bind6

 cgroup-bpf hooks.

 Examples:

 ...

 # Allow binding IPv6 socket addresses with a port greater than or equal to 10000.

 [Service]

 SocketBindAllow=ipv6:10000-65535

 SocketBindDeny=any

 ...

 # Allow binding IPv4 and IPv6 socket addresses with 1234 and 4321 ports.

 [Service]

 SocketBindAllow=1234

 SocketBindAllow=4321

 SocketBindDeny=any

 ...

 # Deny binding IPv6 socket addresses.

 [Service]

 SocketBindDeny=ipv6

 ...

 # Deny binding IPv4 and IPv6 socket addresses.

 [Service]

 SocketBindDeny=any

 ... Page 17/25

 # Allow binding only over TCP

 [Service]

 SocketBindAllow=tcp

 SocketBindDeny=any

 ...

 # Allow binding only over IPv6/TCP

 [Service]

 SocketBindAllow=ipv6:tcp

 SocketBindDeny=any

 ...

 # Allow binding ports within 10000-65535 range over IPv4/UDP.

 [Service]

 SocketBindAllow=ipv4:udp:10000-65535

 SocketBindDeny=any

 ...

 RestrictNetworkInterfaces=

 Takes a list of space-separated network interface names. This

 option restricts the network interfaces that processes of this unit

 can use. By default processes can only use the network interfaces

 listed (allow-list). If the first character of the rule is "~", the

 effect is inverted: the processes can only use network interfaces

 not listed (deny-list).

 This option can appear multiple times, in which case the network

 interface names are merged. If the empty string is assigned the set

 is reset, all prior assignments will have not effect.

 If you specify both types of this option (i.e. allow-listing and

 deny-listing), the first encountered will take precedence and will

 dictate the default action (allow vs deny). Then the next

 occurrences of this option will add or delete the listed network

 interface names from the set, depending of its type and the default

 action.

 The loopback interface ("lo") is not treated in any special way,

 you have to configure it explicitly in the unit file. Page 18/25

 Example 1: allow-list

 RestrictNetworkInterfaces=eth1

 RestrictNetworkInterfaces=eth2

 Programs in the unit will be only able to use the eth1 and eth2

 network interfaces.

 Example 2: deny-list

 RestrictNetworkInterfaces=~eth1 eth2

 Programs in the unit will be able to use any network interface but

 eth1 and eth2.

 Example 3: mixed

 RestrictNetworkInterfaces=eth1 eth2

 RestrictNetworkInterfaces=~eth1

 Programs in the unit will be only able to use the eth2 network

 interface.

 DeviceAllow=

 Control access to specific device nodes by the executed processes.

 Takes two space-separated strings: a device node specifier followed

 by a combination of r, w, m to control reading, writing, or

 creation of the specific device nodes by the unit (mknod),

 respectively. This functionality is implemented using eBPF

 filtering.

 When access to all physical devices should be disallowed,

 PrivateDevices= may be used instead. See systemd.exec(5).

 The device node specifier is either a path to a device node in the

 file system, starting with /dev/, or a string starting with either

 "char-" or "block-" followed by a device group name, as listed in

 /proc/devices. The latter is useful to allow-list all current and

 future devices belonging to a specific device group at once. The

 device group is matched according to filename globbing rules, you

 may hence use the "*" and "?" wildcards. (Note that such globbing

 wildcards are not available for device node path specifications!)

 In order to match device nodes by numeric major/minor, use device

 node paths in the /dev/char/ and /dev/block/ directories. However, Page 19/25

 matching devices by major/minor is generally not recommended as

 assignments are neither stable nor portable between systems or

 different kernel versions.

 Examples: /dev/sda5 is a path to a device node, referring to an ATA

 or SCSI block device. "char-pts" and "char-alsa" are specifiers

 for all pseudo TTYs and all ALSA sound devices, respectively.

 "char-cpu/*" is a specifier matching all CPU related device groups.

 Note that allow lists defined this way should only reference device

 groups which are resolvable at the time the unit is started. Any

 device groups not resolvable then are not added to the device allow

 list. In order to work around this limitation, consider extending

 service units with a pair of After=modprobe@xyz.service and

 Wants=modprobe@xyz.service lines that load the necessary kernel

 module implementing the device group if missing. Example:

 ...

 [Unit]

 Wants=modprobe@loop.service

 After=modprobe@loop.service

 [Service]

 DeviceAllow=block-loop

 DeviceAllow=/dev/loop-control

 ...

 DevicePolicy=auto|closed|strict

 Control the policy for allowing device access:

 strict

 means to only allow types of access that are explicitly

 specified.

 closed

 in addition, allows access to standard pseudo devices including

 /dev/null, /dev/zero, /dev/full, /dev/random, and /dev/urandom.

 auto

 in addition, allows access to all devices if no explicit

 DeviceAllow= is present. This is the default. Page 20/25

 Slice=

 The name of the slice unit to place the unit in. Defaults to

 system.slice for all non-instantiated units of all unit types

 (except for slice units themselves see below). Instance units are

 by default placed in a subslice of system.slice that is named after

 the template name.

 This option may be used to arrange systemd units in a hierarchy of

 slices each of which might have resource settings applied.

 For units of type slice, the only accepted value for this setting

 is the parent slice. Since the name of a slice unit implies the

 parent slice, it is hence redundant to ever set this parameter

 directly for slice units.

 Special care should be taken when relying on the default slice

 assignment in templated service units that have

 DefaultDependencies=no set, see systemd.service(5), section

 "Default Dependencies" for details.

 Delegate=

 Turns on delegation of further resource control partitioning to

 processes of the unit. Units where this is enabled may create and

 manage their own private subhierarchy of control groups below the

 control group of the unit itself. For unprivileged services (i.e.

 those using the User= setting) the unit's control group will be

 made accessible to the relevant user. When enabled the service

 manager will refrain from manipulating control groups or moving

 processes below the unit's control group, so that a clear concept

 of ownership is established: the control group tree above the

 unit's control group (i.e. towards the root control group) is owned

 and managed by the service manager of the host, while the control

 group tree below the unit's control group is owned and managed by

 the unit itself. Takes either a boolean argument or a list of

 control group controller names. If true, delegation is turned on,

 and all supported controllers are enabled for the unit, making them

 available to the unit's processes for management. If false, Page 21/25

 delegation is turned off entirely (and no additional controllers

 are enabled). If set to a list of controllers, delegation is turned

 on, and the specified controllers are enabled for the unit. Note

 that additional controllers than the ones specified might be made

 available as well, depending on configuration of the containing

 slice unit or other units contained in it. Note that assigning the

 empty string will enable delegation, but reset the list of

 controllers, all assignments prior to this will have no effect.

 Defaults to false.

 Note that controller delegation to less privileged code is only

 safe on the unified control group hierarchy. Accordingly, access to

 the specified controllers will not be granted to unprivileged

 services on the legacy hierarchy, even when requested.

 The following controller names may be specified: cpu, cpuacct,

 cpuset, io, blkio, memory, devices, pids, bpf-firewall, and

 bpf-devices.

 Not all of these controllers are available on all kernels however,

 and some are specific to the unified hierarchy while others are

 specific to the legacy hierarchy. Also note that the kernel might

 support further controllers, which aren't covered here yet as

 delegation is either not supported at all for them or not defined

 cleanly.

 For further details on the delegation model consult Control Group

 APIs and Delegation[8].

 DisableControllers=

 Disables controllers from being enabled for a unit's children. If a

 controller listed is already in use in its subtree, the controller

 will be removed from the subtree. This can be used to avoid child

 units being able to implicitly or explicitly enable a controller.

 Defaults to not disabling any controllers.

 It may not be possible to successfully disable a controller if the

 unit or any child of the unit in question delegates controllers to

 its children, as any delegated subtree of the cgroup hierarchy is Page 22/25

 unmanaged by systemd.

 Multiple controllers may be specified, separated by spaces. You may

 also pass DisableControllers= multiple times, in which case each

 new instance adds another controller to disable. Passing

 DisableControllers= by itself with no controller name present

 resets the disabled controller list.

 The following controller names may be specified: cpu, cpuacct,

 cpuset, io, blkio, memory, devices, pids, bpf-firewall, and

 bpf-devices.

 ManagedOOMSwap=auto|kill, ManagedOOMMemoryPressure=auto|kill

 Specifies how systemd-oomd.service(8) will act on this unit's

 cgroups. Defaults to auto.

 When set to kill, the unit becomes a candidate for monitoring by

 systemd-oomd. If the cgroup passes the limits set by oomd.conf(5)

 or the unit configuration, systemd-oomd will select a descendant

 cgroup and send SIGKILL to all of the processes under it. You can

 find more details on candidates and kill behavior at systemd-

 oomd.service(8) and oomd.conf(5).

 Setting either of these properties to kill will also result in

 After= and Wants= dependencies on systemd-oomd.service unless

 DefaultDependencies=no.

 When set to auto, systemd-oomd will not actively use this cgroup's

 data for monitoring and detection. However, if an ancestor cgroup

 has one of these properties set to kill, a unit with auto can still

 be a candidate for systemd-oomd to terminate.

 ManagedOOMMemoryPressureLimit=

 Overrides the default memory pressure limit set by oomd.conf(5) for

 this unit (cgroup). Takes a percentage value between 0% and 100%,

 inclusive. This property is ignored unless

 ManagedOOMMemoryPressure=kill. Defaults to 0%, which means to use

 the default set by oomd.conf(5).

 ManagedOOMPreference=none|avoid|omit

 Allows deprioritizing or omitting this unit's cgroup as a candidate Page 23/25

 when systemd-oomd needs to act. Requires support for extended

 attributes (see xattr(7)) in order to use avoid or omit.

 When calculating candidates to relieve swap usage, systemd-oomd

 will only respect these extended attributes if the unit's cgroup is

 owned by root.

 When calculating candidates to relieve memory pressure,

 systemd-oomd will only respect these extended attributes if the

 unit's cgroup owner, and the owner of the monitored ancestor cgroup

 are the same. For example, if systemd-oomd is calculating

 candidates for -.slice, then extended attributes set on descendants

 of /user.slice/user-1000.slice/user@1000.service/ will be ignored

 because the descendants are owned by UID 1000, and -.slice is owned

 by UID 0. But, if calculating candidates for

 /user.slice/user-1000.slice/user@1000.service/, then extended

 attributes set on the descendants would be respected.

 If this property is set to avoid, the service manager will convey

 this to systemd-oomd, which will only select this cgroup if there

 are no other viable candidates.

 If this property is set to omit, the service manager will convey

 this to systemd-oomd, which will ignore this cgroup as a candidate

 and will not perform any actions on it.

 It is recommended to use avoid and omit sparingly, as it can

 adversely affect systemd-oomd's kill behavior. Also note that these

 extended attributes are not applied recursively to cgroups under

 this unit's cgroup.

 Defaults to none which means systemd-oomd will rank this unit's

 cgroup as defined in systemd-oomd.service(8) and oomd.conf(5).

HISTORY

 systemd 252

 Options for controlling the Legacy Control Group Hierarchy (Control

 Groups version 1[9] are now fully deprecated: CPUShares=weight,

 StartupCPUShares=weight, MemoryLimit=bytes, BlockIOAccounting=,

 BlockIOWeight=weight, StartupBlockIOWeight=weight, Page 24/25

 BlockIODeviceWeight=device weight, BlockIOReadBandwidth=device

 bytes, BlockIOWriteBandwidth=device bytes. Please switch to the

 unified cgroup hierarchy.

SEE ALSO

 systemd(1), systemd-system.conf(5), systemd.unit(5),

 systemd.service(5), systemd.slice(5), systemd.scope(5),

 systemd.socket(5), systemd.mount(5), systemd.swap(5), systemd.exec(5),

 systemd.directives(7), systemd.special(7), systemd-oomd.service(8), The

 documentation for control groups and specific controllers in the Linux

 kernel: Control Groups v2[2].

NOTES

 1. New Control Group Interfaces

 https://www.freedesktop.org/wiki/Software/systemd/ControlGroupInterface

 2. Control Groups v2

 https://docs.kernel.org/admin-guide/cgroup-v2.html

 3. CFS Scheduler

 https://docs.kernel.org/scheduler/sched-design-CFS.html

 4. CFS Bandwidth Control

 https://docs.kernel.org/scheduler/sched-bwc.html

 5. Memory Interface Files

 https://docs.kernel.org/admin-guide/cgroup-v2.html#memory-interface-files

 6. pids controller

 https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html#pid

 7. IO Interface Files

 https://docs.kernel.org/admin-guide/cgroup-v2.html#io-interface-files

 8. Control Group APIs and Delegation

 https://systemd.io/CGROUP_DELEGATION

 9. Control Groups version 1

 https://docs.kernel.org/admin-guide/cgroup-v1/index.html

systemd 252 SYSTEMD.RESOURCE-CONTROL(5)

Page 25/25

