
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'systemd-stub.7' command

$ man systemd-stub.7

SYSTEMD-STUB(7) systemd-stub SYSTEMD-STUB(7)

NAME

 systemd-stub, sd-stub, linuxx64.efi.stub, linuxia32.efi.stub,

 linuxaa64.efi.stub - A simple UEFI kernel boot stub

SYNOPSIS

 /usr/lib/systemd/boot/efi/linuxx64.efi.stub

 /usr/lib/systemd/boot/efi/linuxia32.efi.stub

 /usr/lib/systemd/boot/efi/linuxaa64.efi.stub

 ESP/.../foo.efi.extra.d/*.cred

 ESP/.../foo.efi.extra.d/*.raw

 ESP/loader/credentials/*.cred

DESCRIPTION

 systemd-stub (stored in per-architecture files linuxx64.efi.stub,

 linuxia32.efi.stub, linuxaa64.efi.stub on disk) is a simple UEFI boot

 stub. An UEFI boot stub is attached to a Linux kernel binary image, and

 is a piece of code that runs in the UEFI firmware environment before

 transitioning into the Linux kernel environment. The UEFI boot stub

 ensures a Linux kernel is executable as regular UEFI binary, and is

 able to do various preparations before switching the system into the

 Linux world.

 The UEFI boot stub looks for various resources for the kernel

 invocation inside the UEFI PE binary itself. This allows combining

 various resources inside a single PE binary image (usually called Page 1/9

 "Unified Kernel Image", or "UKI" for short), which may then be signed

 via UEFI SecureBoot as a whole, covering all individual resources at

 once. Specifically it may include:

 ? The ELF Linux kernel images will be looked for in the ".linux" PE

 section of the executed image.

 ? OS release information, i.e. the os-release(5) file of the OS the

 kernel belongs to, in the ".osrel" PE section.

 ? The initrd will be loaded from the ".initrd" PE section.

 ? A compiled binary DeviceTree will be looked for in the ".dtb" PE

 section.

 ? The kernel command line to pass to the invoked kernel will be

 looked for in the ".cmdline" PE section.

 ? A boot splash (in Windows .BMP format) to show on screen before

 invoking the kernel will be looked for in the ".splash" PE section.

 ? A set of cryptographic signatures for expected TPM2 PCR values when

 this kernel is booted, in JSON format, in the ".pcrsig" section.

 This is useful for implementing TPM2 policies that bind disk

 encryption and similar to kernels that are signed by a specific

 key.

 ? A public key in PEM format matching this TPM2 PCR signature data in

 the ".pcrpkey" section.

 If UEFI SecureBoot is enabled and the ".cmdline" section is present in

 the executed image, any attempts to override the kernel command line by

 passing one as invocation parameters to the EFI binary are ignored.

 Thus, in order to allow overriding the kernel command line, either

 disable UEFI SecureBoot, or don't include a kernel command line PE

 section in the kernel image file. If a command line is accepted via EFI

 invocation parameters to the EFI binary it is measured into TPM PCR 12

 (if a TPM is present).

 If a DeviceTree is embedded in the ".dtb" section, it replaces an

 existing DeviceTree in the corresponding EFI configuration table.

 systemd-stub will ask the firmware via the "EFI_DT_FIXUP_PROTOCOL" for

 hardware specific fixups to the DeviceTree. Page 2/9

 The contents of seven of these eight PE sections are measured into TPM

 PCR 11, that is otherwise not used. Thus, it can be pre-calculated

 without too much effort. The ".pcrsig" section is not included in this

 PCR measurement, since it's supposed to contain signatures for the

 expected results for these measurements, i.e. of the outputs of the

 measurement operation, and thus cannot also be input to it.

 When ".pcrsig" and/or ".pcrpkey" are present in a unified kernel image

 their contents are passed to the booted kernel in an synthetic initrd

 cpio archive that places them in the /.extra/tpm2-pcr-signature.json

 and /.extra/tpm2-pcr-public-key.pem files. Typically, a tmpfiles.d(5)

 line then ensures they are copied into

 /run/systemd/tpm2-pcr-signature.json and

 /run/systemd/tpm2-pcr-public-key.pem where they remain accessible even

 after the system transitions out of the initrd environment into the

 host file system. Tools such systemd-cryptsetup@.service(8), systemd-

 cryptenroll(1) and systemd-creds(1) will automatically use files

 present under these paths to unlock protected resources (encrypted

 storage or credentials) or bind encryption to booted kernels.

COMPANION FILES

 The systemd-stub UEFI boot stub automatically collects two types of

 auxiliary companion files optionally placed in drop-in directories on

 the same partition as the EFI binary, dynamically generates cpio initrd

 archives from them, and passes them to the kernel. Specifically:

 ? For a kernel binary called foo.efi, it will look for files with the

 .cred suffix in a directory named foo.efi.extra.d/ next to it. A

 cpio archive is generated from all files found that way, placing

 them in the /.extra/credentials/ directory of the initrd file

 hierarchy. The main initrd may then access them in this directory.

 This is supposed to be used to store auxiliary, encrypted,

 authenticated credentials for use with LoadCredentialEncrypted= in

 the UEFI System Partition. See systemd.exec(5) and systemd-creds(1)

 for details on encrypted credentials. The generated cpio archive is

 measured into TPM PCR 12 (if a TPM is present). Page 3/9

 ? Similarly, files foo.efi.extra.d/*.raw are packed up in a cpio

 archive and placed in the /.extra/sysext/ directory in the initrd

 file hierarchy. This is supposed to be used to pass additional

 system extension images to the initrd. See systemd-sysext(8) for

 details on system extension images. The generated cpio archive

 containing these system extension images is measured into TPM PCR

 13 (if a TPM is present).

 ? Files /loader/credentials/*.cred are packed up in a cpio archive

 and placed in the /.extra/global_credentials/ directory of the

 initrd file hierarchy. This is supposed to be used to pass

 additional credentials to the initrd, regardless of the kernel

 being booted. The generated cpio archive is measured into TPM PCR

 12 (if a TPM is present)

 These mechanisms may be used to parameterize and extend trusted (i.e.

 signed), immutable initrd images in a reasonably safe way: all data

 they contain is measured into TPM PCRs. On access they should be

 further validated: in case of the credentials case by

 encrypting/authenticating them via TPM, as exposed by systemd-creds

 encrypt -T (see systemd-creds(1) for details); in case of the system

 extension images by using signed Verity images.

TPM PCR NOTES

 Note that when a unified kernel using systemd-stub is invoked the

 firmware will measure it as a whole to TPM PCR 4, covering all embedded

 resources, such as the stub code itself, the core kernel, the embedded

 initrd and kernel command line (see above for a full list).

 Also note that the Linux kernel will measure all initrds it receives

 into TPM PCR 9. This means every type of initrd will be measured two or

 three times: the initrd embedded in the kernel image will be measured

 to PCR 4, PCR 9 and PCR 11; the initrd synthesized from credentials

 will be measured to both PCR 9 and PCR 12; the initrd synthesized from

 system extensions will be measured to both PCR 4 and PCR 9. Let's

 summarize the OS resources and the PCRs they are measured to:

 Table 1. OS Resource PCR Summary Page 4/9

 ???

 ?OS Resource ? Measurement PCR ?

 ???

 ?systemd-stub code (the ? 4 ?

 ?entry point of the unified ? ?

 ?PE binary) ? ?

 ???

 ?Core kernel code (embedded ? 4 + 11 ?

 ?in unified PE binary) ? ?

 ???

 ?OS release information ? 4 + 11 ?

 ?(embedded in the unified ? ?

 ?PE binary) ? ?

 ???

 ?Main initrd (embedded in ? 4 + 9 + 11 ?

 ?unified PE binary) ? ?

 ???

 ?Default kernel command ? 4 + 11 ?

 ?line (embedded in unified ? ?

 ?PE binary) ? ?

 ???

 ?Overridden kernel command ? 12 ?

 ?line ? ?

 ???

 ?Boot splash (embedded in ? 4 + 11 ?

 ?the unified PE binary) ? ?

 ???

 ?TPM2 PCR signature JSON ? 4 + 9 ?

 ?(embedded in unified PE ? ?

 ?binary, synthesized into ? ?

 ?initrd) ? ?

 ???

 ?TPM2 PCR PEM public key ? 4 + 9 + 11 ? Page 5/9

 ?(embedded in unified PE ? ?

 ?binary, synthesized into ? ?

 ?initrd) ? ?

 ???

 ?Credentials (synthesized ? 9 + 12 ?

 ?initrd from companion ? ?

 ?files) ? ?

 ???

 ?System Extensions ? 9 + 13 ?

 ?(synthesized initrd from ? ?

 ?companion files) ? ?

 ???

EFI VARIABLES

 The following EFI variables are defined, set and read by systemd-stub,

 under the vendor UUID "4a67b082-0a4c-41cf-b6c7-440b29bb8c4f", for

 communication between the boot stub and the OS:

 LoaderDevicePartUUID

 Contains the partition UUID of the EFI System Partition the EFI

 image was run from. systemd-gpt-auto-generator(8) uses this

 information to automatically find the disk booted from, in order to

 discover various other partitions on the same disk automatically.

 LoaderFirmwareInfo, LoaderFirmwareType

 Brief firmware information. Use bootctl(1) to view this data.

 LoaderImageIdentifier

 The path of EFI executable, relative to the EFI System Partition's

 root directory. Use bootctl(1) to view this data.

 StubInfo

 Brief stub information. Use bootctl(1) to view this data.

 StubPcrKernelImage

 The PCR register index the kernel image, initrd image, boot splash,

 devicetree database, and the embedded command line are measured

 into, formatted as decimal ASCII string (e.g. "11"). This variable

 is set if a measurement was successfully completed, and remains Page 6/9

 unset otherwise.

 StubPcrKernelParameters

 The PCR register index the kernel command line and credentials are

 measured into, formatted as decimal ASCII string (e.g. "12"). This

 variable is set if a measurement was successfully completed, and

 remains unset otherwise.

 StubPcrInitRDSysExts

 The PCR register index the systemd extensions for the initrd, which

 are picked up from the file system the kernel image is located on.

 Formatted as decimal ASCII string (e.g. "13"). This variable is

 set if a measurement was successfully completed, and remains unset

 otherwise.

 Note that some of the variables above may also be set by the boot

 loader. The stub will only set them if they aren't set already. Some of

 these variables are defined by the Boot Loader Interface[1].

INITRD RESOURCES

 The following resources are passed as initrd cpio archives to the

 booted kernel, and thus make up the initial file system hierarchy in

 the initrd execution environment:

 /

 The main initrd from the ".initrd" PE section of the unified kernel

 image.

 /.extra/credentials/*.cred

 Credential files (suffix ".cred") that are placed next to the

 unified kernel image (as described above) are copied into the

 /.extra/credentials/ directory in the initrd execution environment.

 /.extra/global_credentials/*.cred

 Similar, credential files in the /loader/credentials/ directory in

 the file system the unified kernel image is placed in are copied

 into the /.extra/global_credentials/ directory in the initrd

 execution environment.

 /.extra/sysext/*.raw

 System extension image files (suffix ".raw") that are placed next Page 7/9

 to the unified kernel image (as described above) are copied into

 the /.extra/sysext/ directory in the initrd execution environment.

 /.extra/tpm2-pcr-signature.json

 The TPM2 PCR signature JSON object included in the ".pcrsig" PE

 section of the unified kernel image is copied into the

 /.extra/tpm2-pcr-signature.json file in the initrd execution

 environment.

 /.extra/tpm2-pcr-pkey.pem

 The PEM public key included in the ".pcrpkey" PE section of the

 unified kernel image is copied into the

 /.extra/tpm2-pcr-public-key.pem file in the initrd execution

 environment.

 Note that all these files are located in the "tmpfs" file system the

 kernel sets up for the initrd file hierarchy and are thus lost when the

 system transitions from the initrd execution environment into the host

 file system. If these resources shall be kept around over this

 transition they need to be copied to a place that survives the

 transition first, for example via a suitable tmpfiles.d(5) line. By

 default, this is done for the TPM2 PCR signature and public key files.

ASSEMBLING KERNEL IMAGES

 In order to assemble an UEFI PE kernel image from various components as

 described above, use an objcopy(1) command line like this:

 objcopy \

 --add-section .osrel=os-release --change-section-vma .osrel=0x20000 \

 --add-section .cmdline=cmdline.txt --change-section-vma .cmdline=0x30000 \

 --add-section .dtb=devicetree.dtb --change-section-vma .dtb=0x40000 \

 --add-section .splash=splash.bmp --change-section-vma .splash=0x100000 \

 --add-section .linux=vmlinux --change-section-vma .linux=0x2000000 \

 --add-section .initrd=initrd.cpio --change-section-vma .initrd=0x3000000 \

 /usr/lib/systemd/boot/efi/linuxx64.efi.stub \

 foo-unsigned.efi

 Note that these PE section offsets are example values and a properly

 assembled image must not contain any overlapping sections (this Page 8/9

 includes already existing sections inside the stub before assembly) or

 boot may fail.

 This generates one PE executable file foo-unsigned.efi from the six

 individual files for OS release information, kernel command line, boot

 splash image, kernel image, main initrd and UEFI boot stub.

 To then sign the resulting image for UEFI SecureBoot use an sbsign(1)

 command like the following:

 sbsign \

 --key mykey.pem \

 --cert mykey.crt \

 --output foo.efi \

 foo-unsigned.efi

 This expects a pair of X.509 private key and certificate as parameters

 and then signs the UEFI PE executable we generated above for UEFI

 SecureBoot and generates a signed UEFI PE executable as result.

 See systemd-measure(1) for an example involving the ".pcrsig" and

 ".pcrpkey" sections.

SEE ALSO

 systemd-boot(7), systemd.exec(5), systemd-creds(1), systemd-sysext(8),

 Boot Loader Specification[2], Boot Loader Interface[1], objcopy(1),

 sbsign(1), systemd-measure(1)

NOTES

 1. Boot Loader Interface

 https://systemd.io/BOOT_LOADER_INTERFACE

 2. Boot Loader Specification

 https://systemd.io/BOOT_LOADER_SPECIFICATION

systemd 252 SYSTEMD-STUB(7)

Page 9/9

