
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'systemd-run.1' command

$ man systemd-run.1

SYSTEMD-RUN(1) systemd-run SYSTEMD-RUN(1)

NAME

 systemd-run - Run programs in transient scope units, service units, or

 path-, socket-, or timer-triggered service units

SYNOPSIS

 systemd-run [OPTIONS...] COMMAND [ARGS...]

 systemd-run [OPTIONS...] [PATH OPTIONS...] {COMMAND} [ARGS...]

 systemd-run [OPTIONS...] [SOCKET OPTIONS...] {COMMAND} [ARGS...]

 systemd-run [OPTIONS...] [TIMER OPTIONS...] {COMMAND} [ARGS...]

DESCRIPTION

 systemd-run may be used to create and start a transient .service or

 .scope unit and run the specified COMMAND in it. It may also be used to

 create and start a transient .path, .socket, or .timer unit, that

 activates a .service unit when elapsing.

 If a command is run as transient service unit, it will be started and

 managed by the service manager like any other service, and thus shows

 up in the output of systemctl list-units like any other unit. It will

 run in a clean and detached execution environment, with the service

 manager as its parent process. In this mode, systemd-run will start the

 service asynchronously in the background and return after the command

 has begun execution (unless --no-block or --wait are specified, see

 below).

 If a command is run as transient scope unit, it will be executed by Page 1/10

 systemd-run itself as parent process and will thus inherit the

 execution environment of the caller. However, the processes of the

 command are managed by the service manager similarly to normal

 services, and will show up in the output of systemctl list-units.

 Execution in this case is synchronous, and will return only when the

 command finishes. This mode is enabled via the --scope switch (see

 below).

 If a command is run with path, socket, or timer options such as

 --on-calendar= (see below), a transient path, socket, or timer unit is

 created alongside the service unit for the specified command. Only the

 transient path, socket, or timer unit is started immediately, the

 transient service unit will be triggered by the path, socket, or timer

 unit. If the --unit= option is specified, the COMMAND may be omitted.

 In this case, systemd-run creates only a .path, .socket, or .timer unit

 that triggers the specified unit.

 By default, services created with systemd-run default to the simple

 type, see the description of Type= in systemd.service(5) for details.

 Note that when this type is used, the service manager (and thus the

 systemd-run command) considers service start-up successful as soon as

 the fork() for the main service process succeeded, i.e. before the

 execve() is invoked, and thus even if the specified command cannot be

 started. Consider using the exec service type (i.e.

 --property=Type=exec) to ensure that systemd-run returns successfully

 only if the specified command line has been successfully started.

OPTIONS

 The following options are understood:

 --no-ask-password

 Do not query the user for authentication for privileged operations.

 --scope

 Create a transient .scope unit instead of the default transient

 .service unit (see above).

 --unit=, -u

 Use this unit name instead of an automatically generated one. Page 2/10

 --property=, -p

 Sets a property on the scope or service unit that is created. This

 option takes an assignment in the same format as systemctl(1)'s

 set-property command.

 --description=

 Provide a description for the service, scope, path, socket, or

 timer unit. If not specified, the command itself will be used as a

 description. See Description= in systemd.unit(5).

 --slice=

 Make the new .service or .scope unit part of the specified slice,

 instead of system.slice (when running in --system mode) or the root

 slice (when running in --user mode).

 --slice-inherit

 Make the new .service or .scope unit part of the inherited slice.

 This option can be combined with --slice=.

 An inherited slice is located within systemd-run slice. Example: if

 systemd-run slice is foo.slice, and the --slice= argument is bar,

 the unit will be placed under the foo-bar.slice.

 -r, --remain-after-exit

 After the service process has terminated, keep the service around

 until it is explicitly stopped. This is useful to collect runtime

 information about the service after it finished running. Also see

 RemainAfterExit= in systemd.service(5).

 --send-sighup

 When terminating the scope or service unit, send a SIGHUP

 immediately after SIGTERM. This is useful to indicate to shells and

 shell-like processes that the connection has been severed. Also see

 SendSIGHUP= in systemd.kill(5).

 --service-type=

 Sets the service type. Also see Type= in systemd.service(5). This

 option has no effect in conjunction with --scope. Defaults to

 simple.

 --uid=, --gid= Page 3/10

 Runs the service process under the specified UNIX user and group.

 Also see User= and Group= in systemd.exec(5).

 --nice=

 Runs the service process with the specified nice level. Also see

 Nice= in systemd.exec(5).

 --working-directory=

 Runs the service process with the specified working directory. Also

 see WorkingDirectory= in systemd.exec(5).

 --same-dir, -d

 Similar to --working-directory=, but uses the current working

 directory of the caller for the service to execute.

 -E NAME[=VALUE], --setenv=NAME[=VALUE]

 Runs the service process with the specified environment variable

 set. This parameter may be used more than once to set multiple

 variables. When "=" and VALUE are omitted, the value of the

 variable with the same name in the program environment will be

 used.

 Also see Environment= in systemd.exec(5).

 --pty, -t

 When invoking the command, the transient service connects its

 standard input, output and error to the terminal systemd-run is

 invoked on, via a pseudo TTY device. This allows running programs

 that expect interactive user input/output as services, such as

 interactive command shells.

 Note that machinectl(1)'s shell command is usually a better

 alternative for requesting a new, interactive login session on the

 local host or a local container.

 See below for details on how this switch combines with --pipe.

 --pipe, -P

 If specified, standard input, output, and error of the transient

 service are inherited from the systemd-run command itself. This

 allows systemd-run to be used within shell pipelines. Note that

 this mode is not suitable for interactive command shells and Page 4/10

 similar, as the service process will not become a TTY controller

 when invoked on a terminal. Use --pty instead in that case.

 When both --pipe and --pty are used in combination the more

 appropriate option is automatically determined and used.

 Specifically, when invoked with standard input, output and error

 connected to a TTY --pty is used, and otherwise --pipe.

 When this option is used the original file descriptors systemd-run

 receives are passed to the service processes as-is. If the service

 runs with different privileges than systemd-run, this means the

 service might not be able to re-open the passed file descriptors,

 due to normal file descriptor access restrictions. If the invoked

 process is a shell script that uses the echo "hello" > /dev/stderr

 construct for writing messages to stderr, this might cause

 problems, as this only works if stderr can be re-opened. To

 mitigate this use the construct echo "hello" >&2 instead, which is

 mostly equivalent and avoids this pitfall.

 --shell, -S

 A shortcut for "--pty --same-dir --wait --collect

 --service-type=exec $SHELL", i.e. requests an interactive shell in

 the current working directory, running in service context,

 accessible with a single switch.

 --quiet, -q

 Suppresses additional informational output while running. This is

 particularly useful in combination with --pty when it will suppress

 the initial message explaining how to terminate the TTY connection.

 --on-active=, --on-boot=, --on-startup=, --on-unit-active=,

 --on-unit-inactive=

 Defines a monotonic timer relative to different starting points for

 starting the specified command. See OnActiveSec=, OnBootSec=,

 OnStartupSec=, OnUnitActiveSec= and OnUnitInactiveSec= in

 systemd.timer(5) for details. These options are shortcuts for

 --timer-property= with the relevant properties. These options may

 not be combined with --scope or --pty. Page 5/10

 --on-calendar=

 Defines a calendar timer for starting the specified command. See

 OnCalendar= in systemd.timer(5). This option is a shortcut for

 --timer-property=OnCalendar=. This option may not be combined with

 --scope or --pty.

 --on-clock-change, --on-timezone-change

 Defines a trigger based on system clock jumps or timezone changes

 for starting the specified command. See OnClockChange= and

 OnTimezoneChange= in systemd.timer(5). These options are shortcuts

 for --timer-property=OnClockChange=yes and

 --timer-property=OnTimezoneChange=yes. These options may not be

 combined with --scope or --pty.

 --path-property=, --socket-property=, --timer-property=

 Sets a property on the path, socket, or timer unit that is created.

 This option is similar to --property=, but applies to the transient

 path, socket, or timer unit rather than the transient service unit

 created. This option takes an assignment in the same format as

 systemctl(1)'s set-property command. These options may not be

 combined with --scope or --pty.

 --no-block

 Do not synchronously wait for the unit start operation to finish.

 If this option is not specified, the start request for the

 transient unit will be verified, enqueued and systemd-run will wait

 until the unit's start-up is completed. By passing this argument,

 it is only verified and enqueued. This option may not be combined

 with --wait.

 --wait

 Synchronously wait for the transient service to terminate. If this

 option is specified, the start request for the transient unit is

 verified, enqueued, and waited for. Subsequently the invoked unit

 is monitored, and it is waited until it is deactivated again (most

 likely because the specified command completed). On exit, terse

 information about the unit's runtime is shown, including total Page 6/10

 runtime (as well as CPU usage, if --property=CPUAccounting=1 was

 set) and the exit code and status of the main process. This output

 may be suppressed with --quiet. This option may not be combined

 with --no-block, --scope or the various path, socket, or timer

 options.

 -G, --collect

 Unload the transient unit after it completed, even if it failed.

 Normally, without this option, all units that ran and failed are

 kept in memory until the user explicitly resets their failure state

 with systemctl reset-failed or an equivalent command. On the other

 hand, units that ran successfully are unloaded immediately. If this

 option is turned on the "garbage collection" of units is more

 aggressive, and unloads units regardless if they exited

 successfully or failed. This option is a shortcut for

 --property=CollectMode=inactive-or-failed, see the explanation for

 CollectMode= in systemd.unit(5) for further information.

 --user

 Talk to the service manager of the calling user, rather than the

 service manager of the system.

 --system

 Talk to the service manager of the system. This is the implied

 default.

 -H, --host=

 Execute the operation remotely. Specify a hostname, or a username

 and hostname separated by "@", to connect to. The hostname may

 optionally be suffixed by a port ssh is listening on, separated by

 ":", and then a container name, separated by "/", which connects

 directly to a specific container on the specified host. This will

 use SSH to talk to the remote machine manager instance. Container

 names may be enumerated with machinectl -H HOST. Put IPv6 addresses

 in brackets.

 -M, --machine=

 Execute operation on a local container. Specify a container name to Page 7/10

 connect to, optionally prefixed by a user name to connect as and a

 separating "@" character. If the special string ".host" is used in

 place of the container name, a connection to the local system is

 made (which is useful to connect to a specific user's user bus:

 "--user --machine=lennart@.host"). If the "@" syntax is not used,

 the connection is made as root user. If the "@" syntax is used

 either the left hand side or the right hand side may be omitted

 (but not both) in which case the local user name and ".host" are

 implied.

 -h, --help

 Print a short help text and exit.

 --version

 Print a short version string and exit.

 All command line arguments after the first non-option argument become

 part of the command line of the launched process.

EXIT STATUS

 On success, 0 is returned. If systemd-run failed to start the service,

 a non-zero return value will be returned. If systemd-run waits for the

 service to terminate, the return value will be propagated from the

 service. 0 will be returned on success, including all the cases where

 systemd considers a service to have exited cleanly, see the discussion

 of SuccessExitStatus= in systemd.service(5).

EXAMPLES

 Example 1. Logging environment variables provided by systemd to

 services

 # systemd-run env

 Running as unit: run-19945.service

 # journalctl -u run-19945.service

 Sep 08 07:37:21 bupkis systemd[1]: Starting /usr/bin/env...

 Sep 08 07:37:21 bupkis systemd[1]: Started /usr/bin/env.

 Sep 08 07:37:21 bupkis env[19948]: PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin

 Sep 08 07:37:21 bupkis env[19948]: LANG=en_US.UTF-8

 Sep 08 07:37:21 bupkis env[19948]: BOOT_IMAGE=/vmlinuz-3.11.0-0.rc5.git6.2.fc20.x86_64 Page 8/10

 Example 2. Limiting resources available to a command

 # systemd-run -p IOWeight=10 updatedb

 This command invokes the updatedb(8) tool, but lowers the block I/O

 weight for it to 10. See systemd.resource-control(5) for more

 information on the IOWeight= property.

 Example 3. Running commands at a specified time

 The following command will touch a file after 30 seconds.

 # date; systemd-run --on-active=30 --timer-property=AccuracySec=100ms /bin/touch /tmp/foo

 Mon Dec 8 20:44:24 KST 2014

 Running as unit: run-71.timer

 Will run service as unit: run-71.service

 # journalctl -b -u run-71.timer

 -- Journal begins at Fri 2014-12-05 19:09:21 KST, ends at Mon 2014-12-08 20:44:54 KST. --

 Dec 08 20:44:38 container systemd[1]: Starting /bin/touch /tmp/foo.

 Dec 08 20:44:38 container systemd[1]: Started /bin/touch /tmp/foo.

 # journalctl -b -u run-71.service

 -- Journal begins at Fri 2014-12-05 19:09:21 KST, ends at Mon 2014-12-08 20:44:54 KST. --

 Dec 08 20:44:48 container systemd[1]: Starting /bin/touch /tmp/foo...

 Dec 08 20:44:48 container systemd[1]: Started /bin/touch /tmp/foo.

 Example 4. Allowing access to the tty

 The following command invokes bash(1) as a service passing its standard

 input, output and error to the calling TTY.

 # systemd-run -t --send-sighup bash

 Example 5. Start screen as a user service

 $ systemd-run --scope --user screen

 Running scope as unit run-r14b0047ab6df45bfb45e7786cc839e76.scope.

 $ screen -ls

 There is a screen on:

 492..laptop (Detached)

 1 Socket in /var/run/screen/S-fatima.

 This starts the screen process as a child of the systemd --user process

 that was started by user@.service, in a scope unit. A systemd.scope(5)

 unit is used instead of a systemd.service(5) unit, because screen will Page 9/10

 exit when detaching from the terminal, and a service unit would be

 terminated. Running screen as a user unit has the advantage that it is

 not part of the session scope. If KillUserProcesses=yes is configured

 in logind.conf(5), the default, the session scope will be terminated

 when the user logs out of that session.

 The user@.service is started automatically when the user first logs in,

 and stays around as long as at least one login session is open. After

 the user logs out of the last session, user@.service and all services

 underneath it are terminated. This behavior is the default, when

 "lingering" is not enabled for that user. Enabling lingering means that

 user@.service is started automatically during boot, even if the user is

 not logged in, and that the service is not terminated when the user

 logs out.

 Enabling lingering allows the user to run processes without being

 logged in, for example to allow screen to persist after the user logs

 out, even if the session scope is terminated. In the default

 configuration, users can enable lingering for themselves:

 $ loginctl enable-linger

 Example 6. Return value

 $ systemd-run --user --wait true

 $ systemd-run --user --wait -p SuccessExitStatus=11 bash -c 'exit 11'

 $ systemd-run --user --wait -p SuccessExitStatus=SIGUSR1 bash -c 'kill -SIGUSR1 $$$$'

 Those three invocations will succeed, i.e. terminate with an exit code

 of 0.

SEE ALSO

 systemd(1), systemctl(1), systemd.unit(5), systemd.service(5),

 systemd.scope(5), systemd.slice(5), systemd.exec(5), systemd.resource-

 control(5), systemd.timer(5), systemd-mount(1), machinectl(1)

systemd 252 SYSTEMD-RUN(1)

Page 10/10

