
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'systemd-analyze.1' command

$ man systemd-analyze.1

SYSTEMD-ANALYZE(1) systemd-analyze SYSTEMD-ANALYZE(1)

NAME

 systemd-analyze - Analyze and debug system manager

SYNOPSIS

 systemd-analyze [OPTIONS...] [time]

 systemd-analyze [OPTIONS...] blame

 systemd-analyze [OPTIONS...] critical-chain [UNIT...]

 systemd-analyze [OPTIONS...] dump [PATTERN...]

 systemd-analyze [OPTIONS...] plot [>file.svg]

 systemd-analyze [OPTIONS...] dot [PATTERN...] [>file.dot]

 systemd-analyze [OPTIONS...] unit-paths

 systemd-analyze [OPTIONS...] exit-status [STATUS...]

 systemd-analyze [OPTIONS...] capability [CAPABILITY...]

 systemd-analyze [OPTIONS...] condition CONDITION...

 systemd-analyze [OPTIONS...] syscall-filter [SET...]

 systemd-analyze [OPTIONS...] filesystems [SET...]

 systemd-analyze [OPTIONS...] calendar SPEC...

 systemd-analyze [OPTIONS...] timestamp TIMESTAMP...

 systemd-analyze [OPTIONS...] timespan SPAN...

 systemd-analyze [OPTIONS...] cat-config NAME|PATH...

 systemd-analyze [OPTIONS...] compare-versions VERSION1 [OP] VERSION2

 systemd-analyze [OPTIONS...] verify [FILE...]

 systemd-analyze [OPTIONS...] security UNIT... Page 1/29

DESCRIPTION

 systemd-analyze may be used to determine system boot-up performance

 statistics and retrieve other state and tracing information from the

 system and service manager, and to verify the correctness of unit

 files. It is also used to access special functions useful for advanced

 system manager debugging.

 If no command is passed, systemd-analyze time is implied.

 systemd-analyze time

 This command prints the time spent in the kernel before userspace has

 been reached, the time spent in the initrd before normal system

 userspace has been reached, and the time normal system userspace took

 to initialize. Note that these measurements simply measure the time

 passed up to the point where all system services have been spawned, but

 not necessarily until they fully finished initialization or the disk is

 idle.

 Example 1. Show how long the boot took

 # in a container

 $ systemd-analyze time

 Startup finished in 296ms (userspace)

 multi-user.target reached after 275ms in userspace

 # on a real machine

 $ systemd-analyze time

 Startup finished in 2.584s (kernel) + 19.176s (initrd) + 47.847s (userspace) = 1min 9.608s

 multi-user.target reached after 47.820s in userspace

 systemd-analyze blame

 This command prints a list of all running units, ordered by the time

 they took to initialize. This information may be used to optimize

 boot-up times. Note that the output might be misleading as the

 initialization of one service might be slow simply because it waits for

 the initialization of another service to complete. Also note:

 systemd-analyze blame doesn't display results for services with

 Type=simple, because systemd considers such services to be started

 immediately, hence no measurement of the initialization delays can be Page 2/29

 done. Also note that this command only shows the time units took for

 starting up, it does not show how long unit jobs spent in the execution

 queue. In particular it shows the time units spent in "activating"

 state, which is not defined for units such as device units that

 transition directly from "inactive" to "active". This command hence

 gives an impression of the performance of program code, but cannot

 accurately reflect latency introduced by waiting for hardware and

 similar events.

 Example 2. Show which units took the most time during boot

 $ systemd-analyze blame

 32.875s pmlogger.service

 20.905s systemd-networkd-wait-online.service

 13.299s dev-vda1.device

 ...

 23ms sysroot.mount

 11ms initrd-udevadm-cleanup-db.service

 3ms sys-kernel-config.mount

 systemd-analyze critical-chain [UNIT...]

 This command prints a tree of the time-critical chain of units (for

 each of the specified UNITs or for the default target otherwise). The

 time after the unit is active or started is printed after the "@"

 character. The time the unit takes to start is printed after the "+"

 character. Note that the output might be misleading as the

 initialization of services might depend on socket activation and

 because of the parallel execution of units. Also, similarly to the

 blame command, this only takes into account the time units spent in

 "activating" state, and hence does not cover units that never went

 through an "activating" state (such as device units that transition

 directly from "inactive" to "active"). Moreover it does not show

 information on jobs (and in particular not jobs that timed out).

 Example 3. systemd-analyze critical-chain

 $ systemd-analyze critical-chain

 multi-user.target @47.820s Page 3/29

 ??pmie.service @35.968s +548ms

 ??pmcd.service @33.715s +2.247s

 ??network-online.target @33.712s

 ??systemd-networkd-wait-online.service @12.804s +20.905s

 ??systemd-networkd.service @11.109s +1.690s

 ??systemd-udevd.service @9.201s +1.904s

 ??systemd-tmpfiles-setup-dev.service @7.306s +1.776s

 ??kmod-static-nodes.service @6.976s +177ms

 ??systemd-journald.socket

 ??system.slice

 ??-.slice

 systemd-analyze dump [pattern...]

 Without any parameter, this command outputs a (usually very long)

 human-readable serialization of the complete service manager state.

 Optional glob pattern may be specified, causing the output to be

 limited to units whose names match one of the patterns. The output

 format is subject to change without notice and should not be parsed by

 applications.

 Example 4. Show the internal state of user manager

 $ systemd-analyze --user dump

 Timestamp userspace: Thu 2019-03-14 23:28:07 CET

 Timestamp finish: Thu 2019-03-14 23:28:07 CET

 Timestamp generators-start: Thu 2019-03-14 23:28:07 CET

 Timestamp generators-finish: Thu 2019-03-14 23:28:07 CET

 Timestamp units-load-start: Thu 2019-03-14 23:28:07 CET

 Timestamp units-load-finish: Thu 2019-03-14 23:28:07 CET

 -> Unit proc-timer_list.mount:

 Description: /proc/timer_list

 ...

 -> Unit default.target:

 Description: Main user target

 ...

 systemd-analyze plot Page 4/29

 This command prints an SVG graphic detailing which system services have

 been started at what time, highlighting the time they spent on

 initialization.

 Example 5. Plot a bootchart

 $ systemd-analyze plot >bootup.svg

 $ eog bootup.svg&

 systemd-analyze dot [pattern...]

 This command generates textual dependency graph description in dot

 format for further processing with the GraphViz dot(1) tool. Use a

 command line like systemd-analyze dot | dot -Tsvg >systemd.svg to

 generate a graphical dependency tree. Unless --order or --require is

 passed, the generated graph will show both ordering and requirement

 dependencies. Optional pattern globbing style specifications (e.g.

 *.target) may be given at the end. A unit dependency is included in the

 graph if any of these patterns match either the origin or destination

 node.

 Example 6. Plot all dependencies of any unit whose name starts with

 "avahi-daemon"

 $ systemd-analyze dot 'avahi-daemon.*' | dot -Tsvg >avahi.svg

 $ eog avahi.svg

 Example 7. Plot the dependencies between all known target units

 $ systemd-analyze dot --to-pattern='*.target' --from-pattern='*.target' \

 | dot -Tsvg >targets.svg

 $ eog targets.svg

 systemd-analyze unit-paths

 This command outputs a list of all directories from which unit files,

 .d overrides, and .wants, .requires symlinks may be loaded. Combine

 with --user to retrieve the list for the user manager instance, and

 --global for the global configuration of user manager instances.

 Example 8. Show all paths for generated units

 $ systemd-analyze unit-paths | grep '^/run'

 /run/systemd/system.control

 /run/systemd/transient Page 5/29

 /run/systemd/generator.early

 /run/systemd/system

 /run/systemd/system.attached

 /run/systemd/generator

 /run/systemd/generator.late

 Note that this verb prints the list that is compiled into

 systemd-analyze itself, and does not communicate with the running

 manager. Use

 systemctl [--user] [--global] show -p UnitPath --value

 to retrieve the actual list that the manager uses, with any empty

 directories omitted.

 systemd-analyze exit-status [STATUS...]

 This command prints a list of exit statuses along with their "class",

 i.e. the source of the definition (one of "glibc", "systemd", "LSB", or

 "BSD"), see the Process Exit Codes section in systemd.exec(5). If no

 additional arguments are specified, all known statuses are shown.

 Otherwise, only the definitions for the specified codes are shown.

 Example 9. Show some example exit status names

 $ systemd-analyze exit-status 0 1 {63..65}

 NAME STATUS CLASS

 SUCCESS 0 glibc

 FAILURE 1 glibc

 - 63 -

 USAGE 64 BSD

 DATAERR 65 BSD

 systemd-analyze capability [CAPABILITY...]

 This command prints a list of Linux capabilities along with their

 numeric IDs. See capabilities(7) for details. If no argument is

 specified the full list of capabilities known to the service manager

 and the kernel is shown. Capabilities defined by the kernel but not

 known to the service manager are shown as "cap_???". Optionally, if

 arguments are specified they may refer to specific cabilities by name

 or numeric ID, in which case only the indicated capabilities are shown Page 6/29

 in the table.

 Example 10. Show some example capability names

 $ systemd-analyze capability 0 1 {30..32}

 NAME NUMBER

 cap_chown 0

 cap_dac_override 1

 cap_audit_control 30

 cap_setfcap 31

 cap_mac_override 32

 systemd-analyze condition CONDITION...

 This command will evaluate Condition*=... and Assert*=...

 assignments, and print their values, and the resulting value of the

 combined condition set. See systemd.unit(5) for a list of available

 conditions and asserts.

 Example 11. Evaluate conditions that check kernel versions

 $ systemd-analyze condition 'ConditionKernelVersion = ! <4.0' \

 'ConditionKernelVersion = >=5.1' \

 'ConditionACPower=|false' \

 'ConditionArchitecture=|!arm' \

 'AssertPathExists=/etc/os-release'

 test.service: AssertPathExists=/etc/os-release succeeded.

 Asserts succeeded.

 test.service: ConditionArchitecture=|!arm succeeded.

 test.service: ConditionACPower=|false failed.

 test.service: ConditionKernelVersion=>=5.1 succeeded.

 test.service: ConditionKernelVersion=!<4.0 succeeded.

 Conditions succeeded.

 systemd-analyze syscall-filter [SET...]

 This command will list system calls contained in the specified system

 call set SET, or all known sets if no sets are specified. Argument SET

 must include the "@" prefix.

 systemd-analyze filesystems [SET...]

 This command will list filesystems in the specified filesystem set SET, Page 7/29

 or all known sets if no sets are specified. Argument SET must include

 the "@" prefix.

 systemd-analyze calendar EXPRESSION...

 This command will parse and normalize repetitive calendar time events,

 and will calculate when they elapse next. This takes the same input as

 the OnCalendar= setting in systemd.timer(5), following the syntax

 described in systemd.time(7). By default, only the next time the

 calendar expression will elapse is shown; use --iterations= to show the

 specified number of next times the expression elapses. Each time the

 expression elapses forms a timestamp, see the timestamp verb below.

 Example 12. Show leap days in the near future

 $ systemd-analyze calendar --iterations=5 '*-2-29 0:0:0'

 Original form: *-2-29 0:0:0

 Normalized form: *-02-29 00:00:00

 Next elapse: Sat 2020-02-29 00:00:00 UTC

 From now: 11 months 15 days left

 Iter. #2: Thu 2024-02-29 00:00:00 UTC

 From now: 4 years 11 months left

 Iter. #3: Tue 2028-02-29 00:00:00 UTC

 From now: 8 years 11 months left

 Iter. #4: Sun 2032-02-29 00:00:00 UTC

 From now: 12 years 11 months left

 Iter. #5: Fri 2036-02-29 00:00:00 UTC

 From now: 16 years 11 months left

 systemd-analyze timestamp TIMESTAMP...

 This command parses a timestamp (i.e. a single point in time) and

 outputs the normalized form and the difference between this timestamp

 and now. The timestamp should adhere to the syntax documented in

 systemd.time(7), section "PARSING TIMESTAMPS".

 Example 13. Show parsing of timestamps

 $ systemd-analyze timestamp yesterday now tomorrow

 Original form: yesterday

 Normalized form: Mon 2019-05-20 00:00:00 CEST Page 8/29

 (in UTC): Sun 2019-05-19 22:00:00 UTC

 UNIX seconds: @15583032000

 From now: 1 day 9h ago

 Original form: now

 Normalized form: Tue 2019-05-21 09:48:39 CEST

 (in UTC): Tue 2019-05-21 07:48:39 UTC

 UNIX seconds: @1558424919.659757

 From now: 43us ago

 Original form: tomorrow

 Normalized form: Wed 2019-05-22 00:00:00 CEST

 (in UTC): Tue 2019-05-21 22:00:00 UTC

 UNIX seconds: @15584760000

 From now: 14h left

 systemd-analyze timespan EXPRESSION...

 This command parses a time span (i.e. a difference between two

 timestamps) and outputs the normalized form and the equivalent value in

 microseconds. The time span should adhere to the syntax documented in

 systemd.time(7), section "PARSING TIME SPANS". Values without units are

 parsed as seconds.

 Example 14. Show parsing of timespans

 $ systemd-analyze timespan 1s 300s '1year 0.000001s'

 Original: 1s

 ?s: 1000000

 Human: 1s

 Original: 300s

 ?s: 300000000

 Human: 5min

 Original: 1year 0.000001s

 ?s: 31557600000001

 Human: 1y 1us

 systemd-analyze cat-config NAME|PATH...

 This command is similar to systemctl cat, but operates on config files.

 It will copy the contents of a config file and any drop-ins to standard Page 9/29

 output, using the usual systemd set of directories and rules for

 precedence. Each argument must be either an absolute path including the

 prefix (such as /etc/systemd/logind.conf or

 /usr/lib/systemd/logind.conf), or a name relative to the prefix (such

 as systemd/logind.conf).

 Example 15. Showing logind configuration

 $ systemd-analyze cat-config systemd/logind.conf

 # /etc/systemd/logind.conf

 ...

 [Login]

 NAutoVTs=8

 ...

 # /usr/lib/systemd/logind.conf.d/20-test.conf

 ... some override from another package

 # /etc/systemd/logind.conf.d/50-override.conf

 ... some administrator override

 systemd-analyze compare-versions VERSION1 [OP] VERSION2

 This command has two distinct modes of operation, depending on whether

 the operator OP is specified.

 In the first mode ? when OP is not specified ? it will compare the two

 version strings and print either "VERSION1 < VERSION2", or "VERSION1 ==

 VERSION2", or "VERSION1 > VERSION2" as appropriate.

 The exit status is 0 if the versions are equal, 11 if the version of

 the right is smaller, and 12 if the version of the left is smaller.

 (This matches the convention used by rpmdev-vercmp.)

 In the second mode ? when OP is specified ? it will compare the two

 version strings using the operation OP and return 0 (success) if they

 condition is satisfied, and 1 (failure) otherwise. OP may be lt, le,

 eq, ne, ge, gt. In this mode, no output is printed. (This matches the

 convention used by dpkg(1) --compare-versions.)

 Example 16. Compare versions of a package

 $ systemd-analyze compare-versions systemd-250~rc1.fc36.aarch64 systemd-251.fc36.aarch64

 systemd-250~rc1.fc36.aarch64 < systemd-251.fc36.aarch64 Page 10/29

 $ echo $?

 12

 $ systemd-analyze compare-versions 1 lt 2; echo $?

 0

 $ systemd-analyze compare-versions 1 ge 2; echo $?

 1

 systemd-analyze verify FILE...

 This command will load unit files and print warnings if any errors are

 detected. Files specified on the command line will be loaded, but also

 any other units referenced by them. A unit's name on disk can be

 overridden by specifying an alias after a colon; see below for an

 example. The full unit search path is formed by combining the

 directories for all command line arguments, and the usual unit load

 paths. The variable $SYSTEMD_UNIT_PATH is supported, and may be used to

 replace or augment the compiled in set of unit load paths; see

 systemd.unit(5). All units files present in the directories containing

 the command line arguments will be used in preference to the other

 paths.

 The following errors are currently detected:

 ? unknown sections and directives,

 ? missing dependencies which are required to start the given unit,

 ? man pages listed in Documentation= which are not found in the

 system,

 ? commands listed in ExecStart= and similar which are not found in

 the system or not executable.

 Example 17. Misspelt directives

 $ cat ./user.slice

 [Unit]

 WhatIsThis=11

 Documentation=man:nosuchfile(1)

 Requires=different.service

 [Service]

 Description=x Page 11/29

 $ systemd-analyze verify ./user.slice

 [./user.slice:9] Unknown lvalue 'WhatIsThis' in section 'Unit'

 [./user.slice:13] Unknown section 'Service'. Ignoring.

 Error: org.freedesktop.systemd1.LoadFailed:

 Unit different.service failed to load:

 No such file or directory.

 Failed to create user.slice/start: Invalid argument

 user.slice: man nosuchfile(1) command failed with code 16

 Example 18. Missing service units

 $ tail ./a.socket ./b.socket

 ==> ./a.socket <==

 [Socket]

 ListenStream=100

 ==> ./b.socket <==

 [Socket]

 ListenStream=100

 Accept=yes

 $ systemd-analyze verify ./a.socket ./b.socket

 Service a.service not loaded, a.socket cannot be started.

 Service b@0.service not loaded, b.socket cannot be started.

 Example 19. Aliasing a unit

 $ cat /tmp/source

 [Unit]

 Description=Hostname printer

 [Service]

 Type=simple

 ExecStart=/usr/bin/echo %H

 MysteryKey=true

 $ systemd-analyze verify /tmp/source

 Failed to prepare filename /tmp/source: Invalid argument

 $ systemd-analyze verify /tmp/source:alias.service

 /tmp/systemd-analyze-XXXXXX/alias.service:7: Unknown key name 'MysteryKey' in section 'Service', ignoring.

 systemd-analyze security [UNIT...] Page 12/29

 This command analyzes the security and sandboxing settings of one or

 more specified service units. If at least one unit name is specified

 the security settings of the specified service units are inspected and

 a detailed analysis is shown. If no unit name is specified, all

 currently loaded, long-running service units are inspected and a terse

 table with results shown. The command checks for various

 security-related service settings, assigning each a numeric "exposure

 level" value, depending on how important a setting is. It then

 calculates an overall exposure level for the whole unit, which is an

 estimation in the range 0.0...10.0 indicating how exposed a service is

 security-wise. High exposure levels indicate very little applied

 sandboxing. Low exposure levels indicate tight sandboxing and strongest

 security restrictions. Note that this only analyzes the per-service

 security features systemd itself implements. This means that any

 additional security mechanisms applied by the service code itself are

 not accounted for. The exposure level determined this way should not be

 misunderstood: a high exposure level neither means that there is no

 effective sandboxing applied by the service code itself, nor that the

 service is actually vulnerable to remote or local attacks. High

 exposure levels do indicate however that most likely the service might

 benefit from additional settings applied to them.

 Please note that many of the security and sandboxing settings

 individually can be circumvented ? unless combined with others. For

 example, if a service retains the privilege to establish or undo mount

 points many of the sandboxing options can be undone by the service code

 itself. Due to that is essential that each service uses the most

 comprehensive and strict sandboxing and security settings possible. The

 tool will take into account some of these combinations and

 relationships between the settings, but not all. Also note that the

 security and sandboxing settings analyzed here only apply to the

 operations executed by the service code itself. If a service has access

 to an IPC system (such as D-Bus) it might request operations from other

 services that are not subject to the same restrictions. Any Page 13/29

 comprehensive security and sandboxing analysis is hence incomplete if

 the IPC access policy is not validated too.

 Example 20. Analyze systemd-logind.service

 $ systemd-analyze security --no-pager systemd-logind.service

 NAME DESCRIPTION EXPOSURE

 ? PrivateNetwork= Service has access to the host's network 0.5

 ? User=/DynamicUser= Service runs as root user 0.4

 ? DeviceAllow= Service has no device ACL 0.2

 ? IPAddressDeny= Service blocks all IP address ranges

 ...

 ? Overall exposure level for systemd-logind.service: 4.1 OK ?

 systemd-analyze inspect-elf FILE...

 This command will load the specified files, and if they are ELF objects

 (executables, libraries, core files, etc.) it will parse the embedded

 packaging metadata, if any, and print it in a table or json format. See

 the Packaging Metadata[1] documentation for more information.

 Example 21. Table output

 $ systemd-analyze inspect-elf --json=pretty

/tmp/core.fsverity.1000.f77dac5dc161402aa44e15b7dd9dcf97.58561.1637106137000000

 {

 "elfType" : "coredump",

 "elfArchitecture" : "AMD x86-64",

 "/home/bluca/git/fsverity-utils/fsverity" : {

 "type" : "deb",

 "name" : "fsverity-utils",

 "version" : "1.3-1",

 "buildId" : "7c895ecd2a271f93e96268f479fdc3c64a2ec4ee"

 },

 "/home/bluca/git/fsverity-utils/libfsverity.so.0" : {

 "type" : "deb",

 "name" : "fsverity-utils",

 "version" : "1.3-1",

 "buildId" : "b5e428254abf14237b0ae70ed85fffbb98a78f88" Page 14/29

 }

 }

OPTIONS

 The following options are understood:

 --system

 Operates on the system systemd instance. This is the implied

 default.

 --user

 Operates on the user systemd instance.

 --global

 Operates on the system-wide configuration for user systemd

 instance.

 --order, --require

 When used in conjunction with the dot command (see above), selects

 which dependencies are shown in the dependency graph. If --order is

 passed, only dependencies of type After= or Before= are shown. If

 --require is passed, only dependencies of type Requires=,

 Requisite=, Wants= and Conflicts= are shown. If neither is passed,

 this shows dependencies of all these types.

 --from-pattern=, --to-pattern=

 When used in conjunction with the dot command (see above), this

 selects which relationships are shown in the dependency graph. Both

 options require a glob(7) pattern as an argument, which will be

 matched against the left-hand and the right-hand, respectively,

 nodes of a relationship.

 Each of these can be used more than once, in which case the unit

 name must match one of the values. When tests for both sides of the

 relation are present, a relation must pass both tests to be shown.

 When patterns are also specified as positional arguments, they must

 match at least one side of the relation. In other words, patterns

 specified with those two options will trim the list of edges

 matched by the positional arguments, if any are given, and fully

 determine the list of edges shown otherwise. Page 15/29

 --fuzz=timespan

 When used in conjunction with the critical-chain command (see

 above), also show units, which finished timespan earlier, than the

 latest unit in the same level. The unit of timespan is seconds

 unless specified with a different unit, e.g. "50ms".

 --man=no

 Do not invoke man(1) to verify the existence of man pages listed in

 Documentation=.

 --generators

 Invoke unit generators, see systemd.generator(7). Some generators

 require root privileges. Under a normal user, running with

 generators enabled will generally result in some warnings.

 --recursive-errors=MODE

 Control verification of units and their dependencies and whether

 systemd-analyze verify exits with a non-zero process exit status or

 not. With yes, return a non-zero process exit status when warnings

 arise during verification of either the specified unit or any of

 its associated dependencies. With no, return a non-zero process

 exit status when warnings arise during verification of only the

 specified unit. With one, return a non-zero process exit status

 when warnings arise during verification of either the specified

 unit or its immediate dependencies. If this option is not

 specified, zero is returned as the exit status regardless whether

 warnings arise during verification or not.

 --root=PATH

 With cat-files and verify, operate on files underneath the

 specified root path PATH.

 --image=PATH

 With cat-files and verify, operate on files inside the specified

 image path PATH.

 --offline=BOOL

 With security, perform an offline security review of the specified

 unit files, i.e. does not have to rely on PID 1 to acquire security Page 16/29

 information for the files like the security verb when used by

 itself does. This means that --offline= can be used with --root=

 and --image= as well. If a unit's overall exposure level is above

 that set by --threshold= (default value is 100), --offline= will

 return an error.

 --profile=PATH

 With security --offline=, takes into consideration the specified

 portable profile when assessing unit settings. The profile can be

 passed by name, in which case the well-known system locations will

 be searched, or it can be the full path to a specific drop-in file.

 --threshold=NUMBER

 With security, allow the user to set a custom value to compare the

 overall exposure level with, for the specified unit files. If a

 unit's overall exposure level, is greater than that set by the

 user, security will return an error. --threshold= can be used with

 --offline= as well and its default value is 100.

 --security-policy=PATH

 With security, allow the user to define a custom set of

 requirements formatted as a JSON file against which to compare the

 specified unit file(s) and determine their overall exposure level

 to security threats.

 Table 1. Accepted Assessment Test Identifiers

 ???

 ?Assessment Test Identifier ?

 ???

 ?UserOrDynamicUser ?

 ???

 ?SupplementaryGroups ?

 ???

 ?PrivateMounts ?

 ???

 ?PrivateDevices ?

 ??? Page 17/29

 ?PrivateTmp ?

 ???

 ?PrivateNetwork ?

 ???

 ?PrivateUsers ?

 ???

 ?ProtectControlGroups ?

 ???

 ?ProtectKernelModules ?

 ???

 ?ProtectKernelTunables ?

 ???

 ?ProtectKernelLogs ?

 ???

 ?ProtectClock ?

 ???

 ?ProtectHome ?

 ???

 ?ProtectHostname ?

 ???

 ?ProtectSystem ?

 ???

 ?RootDirectoryOrRootImage ?

 ???

 ?LockPersonality ?

 ???

 ?MemoryDenyWriteExecute ?

 ???

 ?NoNewPrivileges ?

 ???

 ?CapabilityBoundingSet_CAP_SYS_ADMIN ?

 ???

 ?CapabilityBoundingSet_CAP_SET_UID_GID_PCAP ? Page 18/29

 ???

 ?CapabilityBoundingSet_CAP_SYS_PTRACE ?

 ???

 ?CapabilityBoundingSet_CAP_SYS_TIME ?

 ???

 ?CapabilityBoundingSet_CAP_NET_ADMIN ?

 ???

 ?CapabilityBoundingSet_CAP_SYS_RAWIO ?

 ???

 ?CapabilityBoundingSet_CAP_SYS_MODULE ?

 ???

 ?CapabilityBoundingSet_CAP_AUDIT ?

 ???

 ?CapabilityBoundingSet_CAP_SYSLOG ?

 ???

 ?CapabilityBoundingSet_CAP_SYS_NICE_RESOURCE ?

 ???

 ?CapabilityBoundingSet_CAP_MKNOD ?

 ???

 ?CapabilityBoundingSet_CAP_CHOWN_FSETID_SETFCAP ?

 ???

 ?CapabilityBoundingSet_CAP_DAC_FOWNER_IPC_OWNER ?

 ???

 ?CapabilityBoundingSet_CAP_KILL ?

 ???

 ?CapabilityBoundingSet_CAP_NET_BIND_SERVICE_BROADCAST_RAW ?

 ???

 ?CapabilityBoundingSet_CAP_SYS_BOOT ?

 ???

 ?CapabilityBoundingSet_CAP_MAC ?

 ???

 ?CapabilityBoundingSet_CAP_LINUX_IMMUTABLE ?

 ??? Page 19/29

 ?CapabilityBoundingSet_CAP_IPC_LOCK ?

 ???

 ?CapabilityBoundingSet_CAP_SYS_CHROOT ?

 ???

 ?CapabilityBoundingSet_CAP_BLOCK_SUSPEND ?

 ???

 ?CapabilityBoundingSet_CAP_WAKE_ALARM ?

 ???

 ?CapabilityBoundingSet_CAP_LEASE ?

 ???

 ?CapabilityBoundingSet_CAP_SYS_TTY_CONFIG ?

 ???

 ?UMask ?

 ???

 ?KeyringMode ?

 ???

 ?ProtectProc ?

 ???

 ?ProcSubset ?

 ???

 ?NotifyAccess ?

 ???

 ?RemoveIPC ?

 ???

 ?Delegate ?

 ???

 ?RestrictRealtime ?

 ???

 ?RestrictSUIDSGID ?

 ???

 ?RestrictNamespaces_user ?

 ???

 ?RestrictNamespaces_mnt ? Page 20/29

 ???

 ?RestrictNamespaces_ipc ?

 ???

 ?RestrictNamespaces_pid ?

 ???

 ?RestrictNamespaces_cgroup ?

 ???

 ?RestrictNamespaces_uts ?

 ???

 ?RestrictNamespaces_net ?

 ???

 ?RestrictAddressFamilies_AF_INET_INET6 ?

 ???

 ?RestrictAddressFamilies_AF_UNIX ?

 ???

 ?RestrictAddressFamilies_AF_NETLINK ?

 ???

 ?RestrictAddressFamilies_AF_PACKET ?

 ???

 ?RestrictAddressFamilies_OTHER ?

 ???

 ?SystemCallArchitectures ?

 ???

 ?SystemCallFilter_swap ?

 ???

 ?SystemCallFilter_obsolete ?

 ???

 ?SystemCallFilter_clock ?

 ???

 ?SystemCallFilter_cpu_emulation ?

 ???

 ?SystemCallFilter_debug ?

 ??? Page 21/29

 ?SystemCallFilter_mount ?

 ???

 ?SystemCallFilter_module ?

 ???

 ?SystemCallFilter_raw_io ?

 ???

 ?SystemCallFilter_reboot ?

 ???

 ?SystemCallFilter_privileged ?

 ???

 ?SystemCallFilter_resources ?

 ???

 ?IPAddressDeny ?

 ???

 ?DeviceAllow ?

 ???

 ?AmbientCapabilities ?

 ???

 See example "JSON Policy" below.

 --json=MODE

 With the security command, generate a JSON formatted output of the

 security analysis table. The format is a JSON array with objects

 containing the following fields: set which indicates if the setting

 has been enabled or not, name which is what is used to refer to the

 setting, json_field which is the JSON compatible identifier of the

 setting, description which is an outline of the setting state, and

 exposure which is a number in the range 0.0...10.0, where a higher

 value corresponds to a higher security threat. The JSON version of

 the table is printed to standard output. The MODE passed to the

 option can be one of three: off which is the default, pretty and

 short which respectively output a prettified or shorted JSON

 version of the security table.

 --iterations=NUMBER Page 22/29

 When used with the calendar command, show the specified number of

 iterations the specified calendar expression will elapse next.

 Defaults to 1.

 --base-time=TIMESTAMP

 When used with the calendar command, show next iterations relative

 to the specified point in time. If not specified defaults to the

 current time.

 --unit=UNIT

 When used with the condition command, evaluate all the

 Condition*=... and Assert*=... assignments in the specified unit

 file. The full unit search path is formed by combining the

 directories for the specified unit with the usual unit load paths.

 The variable $SYSTEMD_UNIT_PATH is supported, and may be used to

 replace or augment the compiled in set of unit load paths; see

 systemd.unit(5). All units files present in the directory

 containing the specified unit will be used in preference to the

 other paths.

 -H, --host=

 Execute the operation remotely. Specify a hostname, or a username

 and hostname separated by "@", to connect to. The hostname may

 optionally be suffixed by a port ssh is listening on, separated by

 ":", and then a container name, separated by "/", which connects

 directly to a specific container on the specified host. This will

 use SSH to talk to the remote machine manager instance. Container

 names may be enumerated with machinectl -H HOST. Put IPv6 addresses

 in brackets.

 -M, --machine=

 Execute operation on a local container. Specify a container name to

 connect to, optionally prefixed by a user name to connect as and a

 separating "@" character. If the special string ".host" is used in

 place of the container name, a connection to the local system is

 made (which is useful to connect to a specific user's user bus:

 "--user --machine=lennart@.host"). If the "@" syntax is not used, Page 23/29

 the connection is made as root user. If the "@" syntax is used

 either the left hand side or the right hand side may be omitted

 (but not both) in which case the local user name and ".host" are

 implied.

 --quiet

 Suppress hints and other non-essential output.

 -h, --help

 Print a short help text and exit.

 --version

 Print a short version string and exit.

 --no-pager

 Do not pipe output into a pager.

EXIT STATUS

 For most commands, 0 is returned on success, and a non-zero failure

 code otherwise.

 With the verb compare-versions, in the two-argument form, 12, 0, 11 is

 returned if the second version string is respectively larger, equal, or

 smaller to the first. In the three-argument form, 0 or 1 if the

 condition is respectively true or false.

ENVIRONMENT

 $SYSTEMD_LOG_LEVEL

 The maximum log level of emitted messages (messages with a higher

 log level, i.e. less important ones, will be suppressed). Either

 one of (in order of decreasing importance) emerg, alert, crit, err,

 warning, notice, info, debug, or an integer in the range 0...7. See

 syslog(3) for more information.

 $SYSTEMD_LOG_COLOR

 A boolean. If true, messages written to the tty will be colored

 according to priority.

 This setting is only useful when messages are written directly to

 the terminal, because journalctl(1) and other tools that display

 logs will color messages based on the log level on their own.

 $SYSTEMD_LOG_TIME Page 24/29

 A boolean. If true, console log messages will be prefixed with a

 timestamp.

 This setting is only useful when messages are written directly to

 the terminal or a file, because journalctl(1) and other tools that

 display logs will attach timestamps based on the entry metadata on

 their own.

 $SYSTEMD_LOG_LOCATION

 A boolean. If true, messages will be prefixed with a filename and

 line number in the source code where the message originates.

 Note that the log location is often attached as metadata to journal

 entries anyway. Including it directly in the message text can

 nevertheless be convenient when debugging programs.

 $SYSTEMD_LOG_TID

 A boolean. If true, messages will be prefixed with the current

 numerical thread ID (TID).

 Note that the this information is attached as metadata to journal

 entries anyway. Including it directly in the message text can

 nevertheless be convenient when debugging programs.

 $SYSTEMD_LOG_TARGET

 The destination for log messages. One of console (log to the

 attached tty), console-prefixed (log to the attached tty but with

 prefixes encoding the log level and "facility", see syslog(3), kmsg

 (log to the kernel circular log buffer), journal (log to the

 journal), journal-or-kmsg (log to the journal if available, and to

 kmsg otherwise), auto (determine the appropriate log target

 automatically, the default), null (disable log output).

 $SYSTEMD_PAGER

 Pager to use when --no-pager is not given; overrides $PAGER. If

 neither $SYSTEMD_PAGER nor $PAGER are set, a set of well-known

 pager implementations are tried in turn, including less(1) and

 more(1), until one is found. If no pager implementation is

 discovered no pager is invoked. Setting this environment variable

 to an empty string or the value "cat" is equivalent to passing Page 25/29

 --no-pager.

 Note: if $SYSTEMD_PAGERSECURE is not set, $SYSTEMD_PAGER (as well

 as $PAGER) will be silently ignored.

 $SYSTEMD_LESS

 Override the options passed to less (by default "FRSXMK").

 Users might want to change two options in particular:

 K

 This option instructs the pager to exit immediately when Ctrl+C

 is pressed. To allow less to handle Ctrl+C itself to switch

 back to the pager command prompt, unset this option.

 If the value of $SYSTEMD_LESS does not include "K", and the

 pager that is invoked is less, Ctrl+C will be ignored by the

 executable, and needs to be handled by the pager.

 X

 This option instructs the pager to not send termcap

 initialization and deinitialization strings to the terminal. It

 is set by default to allow command output to remain visible in

 the terminal even after the pager exits. Nevertheless, this

 prevents some pager functionality from working, in particular

 paged output cannot be scrolled with the mouse.

 See less(1) for more discussion.

 $SYSTEMD_LESSCHARSET

 Override the charset passed to less (by default "utf-8", if the

 invoking terminal is determined to be UTF-8 compatible).

 $SYSTEMD_PAGERSECURE

 Takes a boolean argument. When true, the "secure" mode of the pager

 is enabled; if false, disabled. If $SYSTEMD_PAGERSECURE is not set

 at all, secure mode is enabled if the effective UID is not the same

 as the owner of the login session, see geteuid(2) and

 sd_pid_get_owner_uid(3). In secure mode, LESSSECURE=1 will be set

 when invoking the pager, and the pager shall disable commands that

 open or create new files or start new subprocesses. When

 $SYSTEMD_PAGERSECURE is not set at all, pagers which are not known Page 26/29

 to implement secure mode will not be used. (Currently only less(1)

 implements secure mode.)

 Note: when commands are invoked with elevated privileges, for

 example under sudo(8) or pkexec(1), care must be taken to ensure

 that unintended interactive features are not enabled. "Secure" mode

 for the pager may be enabled automatically as describe above.

 Setting SYSTEMD_PAGERSECURE=0 or not removing it from the inherited

 environment allows the user to invoke arbitrary commands. Note that

 if the $SYSTEMD_PAGER or $PAGER variables are to be honoured,

 $SYSTEMD_PAGERSECURE must be set too. It might be reasonable to

 completely disable the pager using --no-pager instead.

 $SYSTEMD_COLORS

 Takes a boolean argument. When true, systemd and related utilities

 will use colors in their output, otherwise the output will be

 monochrome. Additionally, the variable can take one of the

 following special values: "16", "256" to restrict the use of colors

 to the base 16 or 256 ANSI colors, respectively. This can be

 specified to override the automatic decision based on $TERM and

 what the console is connected to.

 $SYSTEMD_URLIFY

 The value must be a boolean. Controls whether clickable links

 should be generated in the output for terminal emulators supporting

 this. This can be specified to override the decision that systemd

 makes based on $TERM and other conditions.

EXAMPLES

 Example 22. JSON Policy

 The JSON file passed as a path parameter to --security-policy= has a

 top-level JSON object, with keys being the assessment test identifiers

 mentioned above. The values in the file should be JSON objects with one

 or more of the following fields: description_na (string),

 description_good (string), description_bad (string), weight (unsigned

 integer), and range (unsigned integer). If any of these fields

 corresponding to a specific id of the unit file is missing from the Page 27/29

 JSON object, the default built-in field value corresponding to that

 same id is used for security analysis as default. The weight and range

 fields are used in determining the overall exposure level of the unit

 files: the value of each setting is assigned a badness score, which is

 multiplied by the policy weight and divided by the policy range to

 determine the overall exposure that the setting implies. The computed

 badness is summed across all settings in the unit file, normalized to

 the 1...100 range, and used to determine the overall exposure level of

 the unit. By allowing users to manipulate these fields, the 'security'

 verb gives them the option to decide for themself which ids are more

 important and hence should have a greater effect on the exposure level.

 A weight of "0" means the setting will not be checked.

 {

 "PrivateDevices":

 {

 "description_good": "Service has no access to hardware devices",

 "description_bad": "Service potentially has access to hardware devices",

 "weight": 1000,

 "range": 1

 },

 "PrivateMounts":

 {

 "description_good": "Service cannot install system mounts",

 "description_bad": "Service may install system mounts",

 "weight": 1000,

 "range": 1

 },

 "PrivateNetwork":

 {

 "description_good": "Service has no access to the host's network",

 "description_bad": "Service has access to the host's network",

 "weight": 2500,

 "range": 1 Page 28/29

 },

 "PrivateTmp":

 {

 "description_good": "Service has no access to other software's temporary files",

 "description_bad": "Service has access to other software's temporary files",

 "weight": 1000,

 "range": 1

 },

 "PrivateUsers":

 {

 "description_good": "Service does not have access to other users",

 "description_bad": "Service has access to other users",

 "weight": 1000,

 "range": 1

 }

 }

SEE ALSO

 systemd(1), systemctl(1)

NOTES

 1. Packaging Metadata

 https://systemd.io/COREDUMP_PACKAGE_METADATA/

systemd 252 SYSTEMD-ANALYZE(1)

Page 29/29

