
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'sys_nerr.3' command

$ man sys_nerr.3

PERROR(3) Linux Programmer's Manual PERROR(3)

NAME

 perror - print a system error message

SYNOPSIS

 #include <stdio.h>

 void perror(const char *s);

 #include <errno.h>

 const char * const sys_errlist[];

 int sys_nerr;

 int errno; /* Not really declared this way; see errno(3) */

 Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

 sys_errlist, sys_nerr:

 From glibc 2.19 to 2.31:

 _DEFAULT_SOURCE

 Glibc 2.19 and earlier:

 _BSD_SOURCE

DESCRIPTION

 The perror() function produces a message on standard error describing

 the last error encountered during a call to a system or library func?

 tion.

 First (if s is not NULL and *s is not a null byte ('\0')), the argument

 string s is printed, followed by a colon and a blank. Then an error

 message corresponding to the current value of errno and a new-line. Page 1/3

 To be of most use, the argument string should include the name of the

 function that incurred the error.

 The global error list sys_errlist[], which can be indexed by errno, can

 be used to obtain the error message without the newline. The largest

 message number provided in the table is sys_nerr-1. Be careful when

 directly accessing this list, because new error values may not have

 been added to sys_errlist[]. The use of sys_errlist[] is nowadays dep?

 recated; use strerror(3) instead.

 When a system call fails, it usually returns -1 and sets the variable

 errno to a value describing what went wrong. (These values can be

 found in <errno.h>.) Many library functions do likewise. The function

 perror() serves to translate this error code into human-readable form.

 Note that errno is undefined after a successful system call or library

 function call: this call may well change this variable, even though it

 succeeds, for example because it internally used some other library

 function that failed. Thus, if a failing call is not immediately fol?

 lowed by a call to perror(), the value of errno should be saved.

VERSIONS

 Since glibc version 2.32, the declarations of sys_errlist and sys_nerr

 are no longer exposed by <stdio.h>.

ATTRIBUTES

 For an explanation of the terms used in this section, see at?

 tributes(7).

 ??

 ?Interface ? Attribute ? Value ?

 ??

 ?perror() ? Thread safety ? MT-Safe race:stderr ?

 ??

CONFORMING TO

 perror(), errno: POSIX.1-2001, POSIX.1-2008, C89, C99, 4.3BSD.

 The externals sys_nerr and sys_errlist derive from BSD, but are not

 specified in POSIX.1.

NOTES Page 2/3

 The externals sys_nerr and sys_errlist are defined by glibc, but in

 <stdio.h>.

SEE ALSO

 err(3), errno(3), error(3), strerror(3)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

 2020-11-01 PERROR(3)

Page 3/3

