r“‘ .

University

FPDF Library

PDF generator

RedHat
Enterprise Linux

Manual Pages

A

Full credit is given to the above companies including the 0S
that this PDF file was generated!

Red Hat Enterprise Linux Release 9.2 Manual Pages on 'swapcontext.3' command

$ man swapcontext.3
MAKECONTEXT(3)

NAME

Linux Programmer's Manual MAKECONTEXT(3)

makecontext, swapcontext - manipulate user context

SYNOPSIS

#include <ucontext.h>

void makecontext(ucontext_t *ucp, void (*func)(), int argc, ...);

int swapcontext(ucontext_t *oucp, const ucontext_t *ucp);

DESCRIPTION

In a System V-like environment, one has the type ucontext_t (defined in
<ucontext.h> and described in getcontext(3)) and the four functions
getcontext(3), setcontext(3), makecontext(), and swapcontext() that al?
low user-level context switching between multiple threads of control
within a process.

The makecontext() function modifies the context pointed to by ucp
(which was obtained from a call to getcontext(3)). Before invoking

makecontext(), the caller must allocate a new stack for this context

and assign its address to ucp->uc_stack, and define a successor context

and assign its address to ucp->uc_link.

When this context is later activated (using setcontext(3) or swapcon?
text()) the function func is called, and passed the series of integer
(int) arguments that follow argc; the caller must specify the number of
these arguments in argc. When this function returns, the successor

context is activated. If the successor context pointer is NULL, the

Page 1/5

thread exits.
The swapcontext() function saves the current context in the structure
pointed to by oucp, and then activates the context pointed to by ucp.
RETURN VALUE
When successful, swapcontext() does not return. (But we may return
later, in case oucp is activated, in which case it looks like swapcon?
text() returns 0.) On error, swapcontext() returns -1 and sets errno
appropriately.
ERRORS
ENOMEM Insufficient stack space left.
VERSIONS
makecontext() and swapcontext() are provided in glibc since version
2.1.
ATTRIBUTES
For an explanation of the terms used in this section, see at?

tributes(7).

PPV 7??7?7?7?7?7?7?777

?Interface ? Attribute ? Value ?

PPV 2?7?72??72??72?77?7??7?7??7?7?7?7?77?7?7

?makecontext() ? Thread safety ? MT-Safe race:ucp ?

PPV 2??2?77?7??7?7??7?7??7?77?77

?swapcontext() ? Thread safety ? MT-Safe race:oucp race:ucp ?

PPV 72??2?77???7?7???7??7?7777

CONFORMING TO

SUSv2, POSIX.1-2001. POSIX.1-2008 removes the specifications of make?

context() and swapcontext(), citing portability issues, and recommend?

ing that applications be rewritten to use POSIX threads instead.
NOTES

The interpretation of ucp->uc_stack is just as in sigaltstack(2),

namely, this struct contains the start and length of a memory area to

be used as the stack, regardless of the direction of growth of the

stack. Thus, itis not necessary for the user program to worry about

this direction.

Page 2/5

On architectures where int and pointer types are the same size (e.g.,
x86-32, where both types are 32 bits), you may be able to get away with
passing pointers as arguments to makecontext() following argc. How?
ever, doing this is not guaranteed to be portable, is undefined accord?
ing to the standards, and won't work on architectures where pointers
are larger than ints. Nevertheless, starting with version 2.8, glibc
makes some changes to makecontext(), to permit this on some 64-bit ar?
chitectures (e.g., x86-64).
EXAMPLES

The example program below demonstrates the use of getcontext(3), make?
context(), and swapcontext(). Running the program produces the follow?
ing output:

$.Ja.out

main: swapcontext(&uctx_main, &uctx_func2)

func2: started

func2: swapcontext(&uctx_func2, &uctx_funcl)

funcl: started

funcl: swapcontext(&uctx_funcl, &uctx_func?2)

func2: returning

funcl: returning

main: exiting

Program source

#include <ucontext.h>
#include <stdio.h>
#include <stdlib.h>
static ucontext_t uctx_main, uctx_funcl, uctx_func2;
#define handle_error(msg) \

do { perror(msg); exit(EXIT_FAILURE); } while (0)
static void
funcl(void)
{

printf(“funcl: started\n");

printf("funcl: swapcontext(&uctx_funcl, &uctx_func2)\n"); Page 3/5

if (swapcontext(&uctx_funcl, &uctx_func2) == -1)
handle_error("swapcontext");
printf("funcl: returning\n");
}
static void
func2(void)
{
printf("func2: started\n");
printf("func2: swapcontext(&uctx_func2, &uctx_funcl)\n");
if (swapcontext(&uctx_func2, &uctx_funcl) == -1)
handle_error("swapcontext");

printf("func2: returning\n");

int
main(int argc, char *argv[])
{
char funcl_stack[16384];
char func2_stack[16384];
if (getcontext(&uctx_funcl) == -1)
handle_error("getcontext");
uctx_funcl.uc_stack.ss_sp = funcl_stack;
uctx_funcl.uc_stack.ss_size = sizeof(funcl_stack);
uctx_funcl.uc_link = &uctx_main;
makecontext(&uctx_funcl, funcl, 0);
if (getcontext(&uctx_func2) == -1)
handle_error("getcontext");
uctx_func2.uc_stack.ss_sp = func2_stack;
uctx_func2.uc_stack.ss_size = sizeof(func2_stack);
/* Successor context is f1(), unless argc > 1 */
uctx_func2.uc_link = (argc > 1) ? NULL : &uctx_funcl;
makecontext(&uctx_func2, func2, 0);
printf("main: swapcontext(&uctx_main, &uctx_func2)\n");

if (swapcontext(&uctx_main, &uctx_func2) == -1) Page 4/5

handle_error("swapcontext");
printf("main: exiting\n");
exit(EXIT_SUCCESS);
}
SEE ALSO
sigaction(2), sigaltstack(2), sigprocmask(2), getcontext(3),
sigsetjmp(3)
COLOPHON
This page is part of release 5.10 of the Linux man-pages project. A
description of the project, information about reporting bugs, and the
latest version of this page, can be found at
https://www.kernel.org/doc/man-pages/.

GNU 2020-12-21 MAKECONTEXT(3)

Page 5/5

