
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'stdarg.3' command

$ man stdarg.3

STDARG(3) Linux Programmer's Manual STDARG(3)

NAME

 stdarg, va_start, va_arg, va_end, va_copy - variable argument lists

SYNOPSIS

 #include <stdarg.h>

 void va_start(va_list ap, last);

 type va_arg(va_list ap, type);

 void va_end(va_list ap);

 void va_copy(va_list dest, va_list src);

DESCRIPTION

 A function may be called with a varying number of arguments of varying

 types. The include file <stdarg.h> declares a type va_list and defines

 three macros for stepping through a list of arguments whose number and

 types are not known to the called function.

 The called function must declare an object of type va_list which is

 used by the macros va_start(), va_arg(), and va_end().

 va_start()

 The va_start() macro initializes ap for subsequent use by va_arg() and

 va_end(), and must be called first.

 The argument last is the name of the last argument before the variable

 argument list, that is, the last argument of which the calling function

 knows the type.

 Because the address of this argument may be used in the va_start() Page 1/5

 macro, it should not be declared as a register variable, or as a func?

 tion or an array type.

 va_arg()

 The va_arg() macro expands to an expression that has the type and value

 of the next argument in the call. The argument ap is the va_list ap

 initialized by va_start(). Each call to va_arg() modifies ap so that

 the next call returns the next argument. The argument type is a type

 name specified so that the type of a pointer to an object that has the

 specified type can be obtained simply by adding a * to type.

 The first use of the va_arg() macro after that of the va_start() macro

 returns the argument after last. Successive invocations return the

 values of the remaining arguments.

 If there is no next argument, or if type is not compatible with the

 type of the actual next argument (as promoted according to the default

 argument promotions), random errors will occur.

 If ap is passed to a function that uses va_arg(ap,type), then the value

 of ap is undefined after the return of that function.

 va_end()

 Each invocation of va_start() must be matched by a corresponding invo?

 cation of va_end() in the same function. After the call va_end(ap) the

 variable ap is undefined. Multiple traversals of the list, each brack?

 eted by va_start() and va_end() are possible. va_end() may be a macro

 or a function.

 va_copy()

 The va_copy() macro copies the (previously initialized) variable argu?

 ment list src to dest. The behavior is as if va_start() were applied

 to dest with the same last argument, followed by the same number of

 va_arg() invocations that was used to reach the current state of src.

 An obvious implementation would have a va_list be a pointer to the

 stack frame of the variadic function. In such a setup (by far the most

 common) there seems nothing against an assignment

 va_list aq = ap;

 Unfortunately, there are also systems that make it an array of pointers Page 2/5

 (of length 1), and there one needs

 va_list aq;

 *aq = *ap;

 Finally, on systems where arguments are passed in registers, it may be

 necessary for va_start() to allocate memory, store the arguments there,

 and also an indication of which argument is next, so that va_arg() can

 step through the list. Now va_end() can free the allocated memory

 again. To accommodate this situation, C99 adds a macro va_copy(), so

 that the above assignment can be replaced by

 va_list aq;

 va_copy(aq, ap);

 ...

 va_end(aq);

 Each invocation of va_copy() must be matched by a corresponding invoca?

 tion of va_end() in the same function. Some systems that do not supply

 va_copy() have __va_copy instead, since that was the name used in the

 draft proposal.

ATTRIBUTES

 For an explanation of the terms used in this section, see at?

 tributes(7).

 ??

 ?Interface ? Attribute ? Value ?

 ??

 ?va_start(), va_end(), ? Thread safety ? MT-Safe ?

 ?va_copy() ? ? ?

 ??

 ?va_arg() ? Thread safety ? MT-Safe race:ap ?

 ??

CONFORMING TO

 The va_start(), va_arg(), and va_end() macros conform to C89. C99 de?

 fines the va_copy() macro.

BUGS

 Unlike the historical varargs macros, the stdarg macros do not permit Page 3/5

 programmers to code a function with no fixed arguments. This problem

 generates work mainly when converting varargs code to stdarg code, but

 it also creates difficulties for variadic functions that wish to pass

 all of their arguments on to a function that takes a va_list argument,

 such as vfprintf(3).

EXAMPLES

 The function foo takes a string of format characters and prints out the

 argument associated with each format character based on the type.

 #include <stdio.h>

 #include <stdarg.h>

 void

 foo(char *fmt, ...) /* '...' is C syntax for a variadic function */

 {

 va_list ap;

 int d;

 char c;

 char *s;

 va_start(ap, fmt);

 while (*fmt)

 switch (*fmt++) {

 case 's': /* string */

 s = va_arg(ap, char *);

 printf("string %s\n", s);

 break;

 case 'd': /* int */

 d = va_arg(ap, int);

 printf("int %d\n", d);

 break;

 case 'c': /* char */

 /* need a cast here since va_arg only

 takes fully promoted types */

 c = (char) va_arg(ap, int);

 printf("char %c\n", c); Page 4/5

 break;

 }

 va_end(ap);

 }

SEE ALSO

 vprintf(3), vscanf(3), vsyslog(3)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

 2020-11-01 STDARG(3)

Page 5/5

