
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'statx.2' command

$ man statx.2

STATX(2)                   Linux Programmer's Manual                  STATX(2)

NAME

       statx - get file status (extended)

SYNOPSIS

       #include <sys/types.h>

       #include <sys/stat.h>

       #include <unistd.h>

       #include <fcntl.h>           /* Definition of AT_* constants */

       int statx(int dirfd, const char *pathname, int flags,

                 unsigned int mask, struct statx *statxbuf);

DESCRIPTION

       This  function returns information about a file, storing it in the buf?

       fer pointed to by statxbuf.  The returned buffer is a structure of  the

       following type:

           struct statx {

               __u32 stx_mask;        /* Mask of bits indicating

                                         filled fields */

               __u32 stx_blksize;     /* Block size for filesystem I/O */

               __u64 stx_attributes;  /* Extra file attribute indicators */

               __u32 stx_nlink;       /* Number of hard links */

               __u32 stx_uid;         /* User ID of owner */

               __u32 stx_gid;         /* Group ID of owner */

               __u16 stx_mode;        /* File type and mode */ Page 1/10



               __u64 stx_ino;         /* Inode number */

               __u64 stx_size;        /* Total size in bytes */

               __u64 stx_blocks;      /* Number of 512B blocks allocated */

               __u64 stx_attributes_mask;

                                      /* Mask to show what's supported

                                         in stx_attributes */

               /* The following fields are file timestamps */

               struct statx_timestamp stx_atime;  /* Last access */

               struct statx_timestamp stx_btime;  /* Creation */

               struct statx_timestamp stx_ctime;  /* Last status change */

               struct statx_timestamp stx_mtime;  /* Last modification */

               /* If this file represents a device, then the next two

                  fields contain the ID of the device */

               __u32 stx_rdev_major;  /* Major ID */

               __u32 stx_rdev_minor;  /* Minor ID */

               /* The next two fields contain the ID of the device

                  containing the filesystem where the file resides */

               __u32 stx_dev_major;   /* Major ID */

               __u32 stx_dev_minor;   /* Minor ID */

           };

       The file timestamps are structures of the following type:

           struct statx_timestamp {

               __s64 tv_sec;    /* Seconds since the Epoch (UNIX time) */

               __u32 tv_nsec;   /* Nanoseconds since tv_sec */

           };

       (Note that reserved space and padding is omitted.)

   Invoking statx():

       To  access a file's status, no permissions are required on the file it?

       self, but in the case of statx() with a pathname, execute (search) per?

       mission  is required on all of the directories in pathname that lead to

       the file.

       statx() uses pathname, dirfd, and flags to identify the target file  in

       one of the following ways: Page 2/10



       An absolute pathname

              If pathname begins with a slash, then it is an absolute pathname

              that identifies the target file.  In this  case,  dirfd  is  ig?

              nored.

       A relative pathname

              If  pathname is a string that begins with a character other than

              a slash and dirfd is AT_FDCWD, then pathname is a relative path?

              name that is interpreted relative to the process's current work?

              ing directory.

       A directory-relative pathname

              If pathname is a string that begins with a character other  than

              a  slash  and dirfd is a file descriptor that refers to a direc?

              tory, then pathname is a relative pathname that  is  interpreted

              relative to the directory referred to by dirfd.

       By file descriptor

              If  pathname  is  an  empty string and the AT_EMPTY_PATH flag is

              specified in flags (see below), then the target file is the  one

              referred to by the file descriptor dirfd.

       flags  can  be  used to influence a pathname-based lookup.  A value for

       flags is constructed by ORing together zero or more  of  the  following

       constants:

       AT_EMPTY_PATH

              If  pathname is an empty string, operate on the file referred to

              by dirfd (which may have been obtained using the open(2)  O_PATH

              flag).   In  this case, dirfd can refer to any type of file, not

              just a directory.

              If dirfd is AT_FDCWD, the call operates on the  current  working

              directory.

              This  flag  is  Linux-specific; define _GNU_SOURCE to obtain its

              definition.

       AT_NO_AUTOMOUNT

              Don't automount the terminal ("basename") component of  pathname

              if  it  is  a directory that is an automount point.  This allows Page 3/10



              the caller to gather attributes of an  automount  point  (rather

              than  the  location  it  would mount).  This flag can be used in

              tools that scan directories to prevent  mass-automounting  of  a

              directory  of automount points.  The AT_NO_AUTOMOUNT flag has no

              effect if the mount point has already been mounted  over.   This

              flag is Linux-specific; define _GNU_SOURCE to obtain its defini?

              tion.

       AT_SYMLINK_NOFOLLOW

              If pathname is a symbolic link, do not dereference  it:  instead

              return information about the link itself, like lstat(2).

       flags can also be used to control what sort of synchronization the ker?

       nel will do when querying a file on a remote filesystem.  This is  done

       by ORing in one of the following values:

       AT_STATX_SYNC_AS_STAT

              Do  whatever stat(2) does.  This is the default and is very much

              filesystem-specific.

       AT_STATX_FORCE_SYNC

              Force the attributes to be synchronized with the  server.   This

              may  require  that a network filesystem perform a data writeback

              to get the timestamps correct.

       AT_STATX_DONT_SYNC

              Don't synchronize anything, but rather just  take  whatever  the

              system  has cached if possible.  This may mean that the informa?

              tion returned is approximate, but, on a network  filesystem,  it

              may not involve a round trip to the server - even if no lease is

              held.

       The mask argument to statx() is used to tell the  kernel  which  fields

       the  caller  is interested in.  mask is an ORed combination of the fol?

       lowing constants:

           STATX_TYPE          Want stx_mode & S_IFMT

           STATX_MODE          Want stx_mode & ~S_IFMT

           STATX_NLINK         Want stx_nlink

           STATX_UID           Want stx_uid Page 4/10



           STATX_GID           Want stx_gid

           STATX_ATIME         Want stx_atime

           STATX_MTIME         Want stx_mtime

           STATX_CTIME         Want stx_ctime

           STATX_INO           Want stx_ino

           STATX_SIZE          Want stx_size

           STATX_BLOCKS        Want stx_blocks

           STATX_BASIC_STATS   [All of the above]

           STATX_BTIME         Want stx_btime

           STATX_ALL           [All currently available fields]

       Note that, in general, the kernel does not reject values in mask  other

       than the above.  (For an exception, see EINVAL in errors.)  Instead, it

       simply informs the caller which values are supported by this kernel and

       filesystem  via the statx.stx_mask field.  Therefore, do not simply set

       mask to UINT_MAX (all bits set), as one or more bits may,  in  the  fu?

       ture, be used to specify an extension to the buffer.

   The returned information

       The  status  information  for  the target file is returned in the statx

       structure pointed to by statxbuf.  Included in this is  stx_mask  which

       indicates  what  other information has been returned.  stx_mask has the

       same format as the mask argument and bits are set  in  it  to  indicate

       which fields have been filled in.

       It  should  be noted that the kernel may return fields that weren't re?

       quested and may fail to return fields that were requested, depending on

       what  the  backing  filesystem supports.  (Fields that are given values

       despite being unrequested  can  just  be  ignored.)   In  either  case,

       stx_mask will not be equal mask.

       If  a  filesystem  does  not  support  a field or if it has an unrepre?

       sentable value (for instance, a file with an  exotic  type),  then  the

       mask  bit  corresponding to that field will be cleared in stx_mask even

       if the user asked for it and a dummy value will be filled in  for  com?

       patibility  purposes if one is available (e.g., a dummy UID and GID may

       be specified to mount under some circumstances). Page 5/10



       A filesystem may also fill in fields that the caller didn't ask for  if

       it has values for them available and the information is available at no

       extra cost.  If this happens, the corresponding bits  will  be  set  in

       stx_mask.

       Note:  for  performance and simplicity reasons, different fields in the

       statx structure may contain state information  from  different  moments

       during  the  execution of the system call.  For example, if stx_mode or

       stx_uid is changed by another process by calling chmod(2) or  chown(2),

       stat()  might return the old stx_mode together with the new stx_uid, or

       the old stx_uid together with the new stx_mode.

       Apart from stx_mask (which is described above), the fields in the statx

       structure are:

       stx_blksize

              The "preferred" block size for efficient filesystem I/O.  (Writ?

              ing to a file in smaller chunks may cause an  inefficient  read-

              modify-rewrite.)

       stx_attributes

              Further  status  information  about the file (see below for more

              information).

       stx_nlink

              The number of hard links on a file.

       stx_uid

              This field contains the user ID of the owner of the file.

       stx_gid

              This field contains the ID of the group owner of the file.

       stx_mode

              The file type and mode.  See inode(7) for details.

       stx_ino

              The inode number of the file.

       stx_size

              The size of the file (if it is a  regular  file  or  a  symbolic

              link)  in  bytes.   The size of a symbolic link is the length of

              the pathname it contains, without a terminating null byte. Page 6/10



       stx_blocks

              The number of blocks allocated to the file  on  the  medium,  in

              512-byte units.  (This may be smaller than stx_size/512 when the

              file has holes.)

       stx_attributes_mask

              A mask indicating which bits in stx_attributes are supported  by

              the VFS and the filesystem.

       stx_atime

              The file's last access timestamp.

       stx_btime

              The file's creation timestamp.

       stx_ctime

              The file's last status change timestamp.

       stx_mtime

              The file's last modification timestamp.

       stx_dev_major and stx_dev_minor

              The device on which this file (inode) resides.

       stx_rdev_major and stx_rdev_minor

              The  device  that this file (inode) represents if the file is of

              block or character device type.

       For further information on the above fields, see inode(7).

   File attributes

       The stx_attributes field contains a set of ORed flags that indicate ad?

       ditional  attributes  of the file.  Note that any attribute that is not

       indicated as supported by stx_attributes_mask has no usable value here.

       The  bits  in  stx_attributes_mask  correspond  bit-by-bit  to  stx_at?

       tributes.

       The flags are as follows:

       STATX_ATTR_COMPRESSED

              The file is compressed by the filesystem and may take extra  re?

              sources to access.

       STATX_ATTR_IMMUTABLE

              The file cannot be modified: it cannot be deleted or renamed, no Page 7/10



              hard links can be created to this file and no data can be  writ?

              ten to it.  See chattr(1).

       STATX_ATTR_APPEND

              The  file can only be opened in append mode for writing.  Random

              access writing is not permitted.  See chattr(1).

       STATX_ATTR_NODUMP

              File is not a candidate for backup when a backup program such as

              dump(8) is run.  See chattr(1).

       STATX_ATTR_ENCRYPTED

              A  key  is required for the file to be encrypted by the filesys?

              tem.

       STATX_ATTR_VERITY (since Linux 5.5)

              The file has fs-verity enabled.  It cannot be  written  to,  and

              all  reads from it will be verified against a cryptographic hash

              that covers the entire file (e.g., via a Merkle tree).

       STATX_ATTR_DAX (since Linux 5.8)

              The file is in the DAX (cpu direct access) state.  DAX state at?

              tempts  to minimize software cache effects for both I/O and mem?

              ory mappings of this file.  It requires a file system which  has

              been configured to support DAX.

              DAX  generally assumes all accesses are via CPU load / store in?

              structions which can minimize overhead for small  accesses,  but

              may adversely affect CPU utilization for large transfers.

              File  I/O is done directly to/from user-space buffers and memory

              mapped I/O may be performed with direct memory mappings that by?

              pass the kernel page cache.

              While the DAX property tends to result in data being transferred

              synchronously, it does not  give  the  same  guarantees  as  the

              O_SYNC flag (see open(2)), where data and the necessary metadata

              are transferred together.

              A DAX file may support being  mapped  with  the  MAP_SYNC  flag,

              which  enables  a program to use CPU cache flush instructions to

              persist CPU store operations without an explicit fsync(2).   See Page 8/10



              mmap(2) for more information.

RETURN VALUE

       On  success,  zero is returned.  On error, -1 is returned, and errno is

       set appropriately.

ERRORS

       EACCES Search permission is denied for one of the  directories  in  the

              path prefix of pathname.  (See also path_resolution(7).)

       EBADF  dirfd is not a valid open file descriptor.

       EFAULT pathname or statxbuf is NULL or points to a location outside the

              process's accessible address space.

       EINVAL Invalid flag specified in flags.

       EINVAL Reserved flag specified in mask.  (Currently, there is one  such

              flag, designated by the constant STATX__RESERVED, with the value

              0x80000000U.)

       ELOOP  Too many symbolic links encountered while traversing  the  path?

              name.

       ENAMETOOLONG

              pathname is too long.

       ENOENT A  component of pathname does not exist, or pathname is an empty

              string and AT_EMPTY_PATH was not specified in flags.

       ENOMEM Out of memory (i.e., kernel memory).

       ENOTDIR

              A component of the path prefix of pathname is not a directory or

              pathname is relative and dirfd is a file descriptor referring to

              a file other than a directory.

VERSIONS

       statx() was added to Linux in kernel 4.11; library support was added in

       glibc 2.28.

CONFORMING TO

       statx() is Linux-specific.

SEE ALSO

       ls(1),  stat(1),  access(2),  chmod(2), chown(2), readlink(2), stat(2),

       utime(2), capabilities(7), inode(7), symlink(7) Page 9/10



COLOPHON

       This page is part of release 5.10 of the Linux  man-pages  project.   A

       description  of  the project, information about reporting bugs, and the

       latest    version    of    this    page,    can     be     found     at

       https://www.kernel.org/doc/man-pages/.

Linux                             2020-08-13                          STATX(2)

Page 10/10


