
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'sssd-sudo.5' command

$ man sssd-sudo.5

SSSD-SUDO(5) File Formats and Conventions SSSD-SUDO(5)

NAME

 sssd-sudo - Configuring sudo with the SSSD back end

DESCRIPTION

 This manual page describes how to configure sudo(8) to work with

 sssd(8) and how SSSD caches sudo rules.

CONFIGURING SUDO TO COOPERATE WITH SSSD

 To enable SSSD as a source for sudo rules, add sss to the sudoers entry

 in nsswitch.conf(5).

 For example, to configure sudo to first lookup rules in the standard

 sudoers(5) file (which should contain rules that apply to local users)

 and then in SSSD, the nsswitch.conf file should contain the following

 line:

 sudoers: files sss

 More information about configuring the sudoers search order from the

 nsswitch.conf file as well as information about the LDAP schema that is

 used to store sudo rules in the directory can be found in

 sudoers.ldap(5).

 Note: in order to use netgroups or IPA hostgroups in sudo rules, you

 also need to correctly set nisdomainname(1) to your NIS domain name

 (which equals to IPA domain name when using hostgroups).

CONFIGURING SSSD TO FETCH SUDO RULES

 All configuration that is needed on SSSD side is to extend the list of Page 1/4

 services with "sudo" in [sssd] section of sssd.conf(5). To speed up the

 LDAP lookups, you can also set search base for sudo rules using

 ldap_sudo_search_base option.

 The following example shows how to configure SSSD to download sudo

 rules from an LDAP server.

 [sssd]

 config_file_version = 2

 services = nss, pam, sudo

 domains = EXAMPLE

 [domain/EXAMPLE]

 id_provider = ldap

 sudo_provider = ldap

 ldap_uri = ldap://example.com

 ldap_sudo_search_base = ou=sudoers,dc=example,dc=com

 It's important to note that on platforms where systemd is supported

 there's no need to add the "sudo" provider to the list of services, as

 it became optional. However, sssd-sudo.socket must be enabled instead.

 When SSSD is configured to use IPA as the ID provider, the sudo

 provider is automatically enabled. The sudo search base is configured

 to use the IPA native LDAP tree (cn=sudo,$SUFFIX). If any other search

 base is defined in sssd.conf, this value will be used instead. The

 compat tree (ou=sudoers,$SUFFIX) is no longer required for IPA sudo

 functionality.

THE SUDO RULE CACHING MECHANISM

 The biggest challenge, when developing sudo support in SSSD, was to

 ensure that running sudo with SSSD as the data source provides the same

 user experience and is as fast as sudo but keeps providing the most

 current set of rules as possible. To satisfy these requirements, SSSD

 uses three kinds of updates. They are referred to as full refresh,

 smart refresh and rules refresh.

 The smart refresh periodically downloads rules that are new or were

 modified after the last update. Its primary goal is to keep the

 database growing by fetching only small increments that do not generate Page 2/4

 large amounts of network traffic.

 The full refresh simply deletes all sudo rules stored in the cache and

 replaces them with all rules that are stored on the server. This is

 used to keep the cache consistent by removing every rule which was

 deleted from the server. However, full refresh may produce a lot of

 traffic and thus it should be run only occasionally depending on the

 size and stability of the sudo rules.

 The rules refresh ensures that we do not grant the user more permission

 than defined. It is triggered each time the user runs sudo. Rules

 refresh will find all rules that apply to this user, check their

 expiration time and redownload them if expired. In the case that any of

 these rules are missing on the server, the SSSD will do an out of band

 full refresh because more rules (that apply to other users) may have

 been deleted.

 If enabled, SSSD will store only rules that can be applied to this

 machine. This means rules that contain one of the following values in

 sudoHost attribute:

 ? keyword ALL

 ? wildcard

 ? netgroup (in the form "+netgroup")

 ? hostname or fully qualified domain name of this machine

 ? one of the IP addresses of this machine

 ? one of the IP addresses of the network (in the form "address/mask")

 There are many configuration options that can be used to adjust the

 behavior. Please refer to "ldap_sudo_*" in sssd-ldap(5) and "sudo_*" in

 sssd.conf(5).

TUNING THE PERFORMANCE

 SSSD uses different kinds of mechanisms with more or less complex LDAP

 filters to keep the cached sudo rules up to date. The default

 configuration is set to values that should satisfy most of our users,

 but the following paragraphs contain few tips on how to fine- tune the

 configuration to your requirements.

 1. Index LDAP attributes. Make sure that following LDAP attributes are Page 3/4

 indexed: objectClass, cn, entryUSN or modifyTimestamp.

 2. Set ldap_sudo_search_base. Set the search base to the container

 that holds the sudo rules to limit the scope of the lookup.

 3. Set full and smart refresh interval. If your sudo rules do not

 change often and you do not require quick update of cached rules on

 your clients, you may consider increasing the

 ldap_sudo_full_refresh_interval and ldap_sudo_smart_refresh_interval.

 You may also consider disabling the smart refresh by setting

 ldap_sudo_smart_refresh_interval = 0.

 4. If you have large number of clients, you may consider increasing the

 value of ldap_sudo_random_offset to distribute the load on the server

 better.

SEE ALSO

 sssd(8), sssd.conf(5), sssd-ldap(5), sssd-ldap-attributes(5), sssd-

 krb5(5), sssd-simple(5), sssd-ipa(5), sssd-ad(5), sssd-files(5), sssd-

 sudo(5), sssd-session-recording(5), sss_cache(8), sss_debuglevel(8),

 sss_obfuscate(8), sss_seed(8), sssd_krb5_locator_plugin(8),

 sss_ssh_authorizedkeys(8), sss_ssh_knownhostsproxy(8), sssd-ifp(5),

 pam_sss(8). sss_rpcidmapd(5) sssd-systemtap(5)

AUTHORS

 The SSSD upstream - https://github.com/SSSD/sssd/

SSSD 07/10/2023 SSSD-SUDO(5)

Page 4/4

