
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'ssh.1' command

$ man ssh.1

SSH(1) BSD General Commands Manual SSH(1)

NAME

 ssh ? OpenSSH remote login client

SYNOPSIS

 ssh [-46AaCfGgKkMNnqsTtVvXxYy] [-B bind_interface] [-b bind_address]

 [-c cipher_spec] [-D [bind_address:]port] [-E log_file]

 [-e escape_char] [-F configfile] [-I pkcs11] [-i identity_file]

 [-J destination] [-L address] [-l login_name] [-m mac_spec]

 [-O ctl_cmd] [-o option] [-p port] [-Q query_option] [-R address]

 [-S ctl_path] [-W host:port] [-w local_tun[:remote_tun]] destination

 [command]

DESCRIPTION

 ssh (SSH client) is a program for logging into a remote machine and for

 executing commands on a remote machine. It is intended to provide secure

 encrypted communications between two untrusted hosts over an insecure

 network. X11 connections, arbitrary TCP ports and UNIX-domain sockets

 can also be forwarded over the secure channel.

 ssh connects and logs into the specified destination, which may be speci?

 fied as either [user@]hostname or a URI of the form

 ssh://[user@]hostname[:port]. The user must prove their identity to the

 remote machine using one of several methods (see below).

 If a command is specified, it is executed on the remote host instead of a

 login shell. Page 1/26

 The options are as follows:

 -4 Forces ssh to use IPv4 addresses only.

 -6 Forces ssh to use IPv6 addresses only.

 -A Enables forwarding of connections from an authentication agent

 such as ssh-agent(1). This can also be specified on a per-host

 basis in a configuration file.

 Agent forwarding should be enabled with caution. Users with the

 ability to bypass file permissions on the remote host (for the

 agent's UNIX-domain socket) can access the local agent through

 the forwarded connection. An attacker cannot obtain key material

 from the agent, however they can perform operations on the keys

 that enable them to authenticate using the identities loaded into

 the agent. A safer alternative may be to use a jump host (see

 -J).

 -a Disables forwarding of the authentication agent connection.

 -B bind_interface

 Bind to the address of bind_interface before attempting to con?

 nect to the destination host. This is only useful on systems

 with more than one address.

 -b bind_address

 Use bind_address on the local machine as the source address of

 the connection. Only useful on systems with more than one ad?

 dress.

 -C Requests compression of all data (including stdin, stdout,

 stderr, and data for forwarded X11, TCP and UNIX-domain connec?

 tions). The compression algorithm is the same used by gzip(1).

 Compression is desirable on modem lines and other slow connec?

 tions, but will only slow down things on fast networks. The de?

 fault value can be set on a host-by-host basis in the configura?

 tion files; see the Compression option.

 -c cipher_spec

 Selects the cipher specification for encrypting the session.

 cipher_spec is a comma-separated list of ciphers listed in order Page 2/26

 of preference. See the Ciphers keyword in ssh_config(5) for more

 information.

 -D [bind_address:]port

 Specifies a local ?dynamic? application-level port forwarding.

 This works by allocating a socket to listen to port on the local

 side, optionally bound to the specified bind_address. Whenever a

 connection is made to this port, the connection is forwarded over

 the secure channel, and the application protocol is then used to

 determine where to connect to from the remote machine. Currently

 the SOCKS4 and SOCKS5 protocols are supported, and ssh will act

 as a SOCKS server. Only root can forward privileged ports. Dy?

 namic port forwardings can also be specified in the configuration

 file.

 IPv6 addresses can be specified by enclosing the address in

 square brackets. Only the superuser can forward privileged

 ports. By default, the local port is bound in accordance with

 the GatewayPorts setting. However, an explicit bind_address may

 be used to bind the connection to a specific address. The

 bind_address of ?localhost? indicates that the listening port be

 bound for local use only, while an empty address or ?*? indicates

 that the port should be available from all interfaces.

 -E log_file

 Append debug logs to log_file instead of standard error.

 -e escape_char

 Sets the escape character for sessions with a pty (default: ?~?).

 The escape character is only recognized at the beginning of a

 line. The escape character followed by a dot (?.?) closes the

 connection; followed by control-Z suspends the connection; and

 followed by itself sends the escape character once. Setting the

 character to ?none? disables any escapes and makes the session

 fully transparent.

 -F configfile

 Specifies an alternative per-user configuration file. If a con? Page 3/26

 figuration file is given on the command line, the system-wide

 configuration file (/etc/ssh/ssh_config) will be ignored. The

 default for the per-user configuration file is ~/.ssh/config. If

 set to ?none?, no configuration files will be read.

 -f Requests ssh to go to background just before command execution.

 This is useful if ssh is going to ask for passwords or

 passphrases, but the user wants it in the background. This im?

 plies -n. The recommended way to start X11 programs at a remote

 site is with something like ssh -f host xterm.

 If the ExitOnForwardFailure configuration option is set to ?yes?,

 then a client started with -f will wait for all remote port for?

 wards to be successfully established before placing itself in the

 background. Refer to the description of ForkAfterAuthentication

 in ssh_config(5) for details.

 -G Causes ssh to print its configuration after evaluating Host and

 Match blocks and exit.

 -g Allows remote hosts to connect to local forwarded ports. If used

 on a multiplexed connection, then this option must be specified

 on the master process.

 -I pkcs11

 Specify the PKCS#11 shared library ssh should use to communicate

 with a PKCS#11 token providing keys for user authentication.

 -i identity_file

 Selects a file from which the identity (private key) for public

 key authentication is read. The default is ~/.ssh/id_dsa,

 ~/.ssh/id_ecdsa, ~/.ssh/id_ecdsa_sk, ~/.ssh/id_ed25519,

 ~/.ssh/id_ed25519_sk and ~/.ssh/id_rsa. Identity files may also

 be specified on a per-host basis in the configuration file. It

 is possible to have multiple -i options (and multiple identities

 specified in configuration files). If no certificates have been

 explicitly specified by the CertificateFile directive, ssh will

 also try to load certificate information from the filename ob?

 tained by appending -cert.pub to identity filenames. Page 4/26

 -J destination

 Connect to the target host by first making a ssh connection to

 the jump host described by destination and then establishing a

 TCP forwarding to the ultimate destination from there. Multiple

 jump hops may be specified separated by comma characters. This

 is a shortcut to specify a ProxyJump configuration directive.

 Note that configuration directives supplied on the command-line

 generally apply to the destination host and not any specified

 jump hosts. Use ~/.ssh/config to specify configuration for jump

 hosts.

 -K Enables GSSAPI-based authentication and forwarding (delegation)

 of GSSAPI credentials to the server.

 -k Disables forwarding (delegation) of GSSAPI credentials to the

 server.

 -L [bind_address:]port:host:hostport

 -L [bind_address:]port:remote_socket

 -L local_socket:host:hostport

 -L local_socket:remote_socket

 Specifies that connections to the given TCP port or Unix socket

 on the local (client) host are to be forwarded to the given host

 and port, or Unix socket, on the remote side. This works by al?

 locating a socket to listen to either a TCP port on the local

 side, optionally bound to the specified bind_address, or to a

 Unix socket. Whenever a connection is made to the local port or

 socket, the connection is forwarded over the secure channel, and

 a connection is made to either host port hostport, or the Unix

 socket remote_socket, from the remote machine.

 Port forwardings can also be specified in the configuration file.

 Only the superuser can forward privileged ports. IPv6 addresses

 can be specified by enclosing the address in square brackets.

 By default, the local port is bound in accordance with the

 GatewayPorts setting. However, an explicit bind_address may be

 used to bind the connection to a specific address. The Page 5/26

 bind_address of ?localhost? indicates that the listening port be

 bound for local use only, while an empty address or ?*? indicates

 that the port should be available from all interfaces.

 -l login_name

 Specifies the user to log in as on the remote machine. This also

 may be specified on a per-host basis in the configuration file.

 -M Places the ssh client into ?master? mode for connection sharing.

 Multiple -M options places ssh into ?master? mode but with con?

 firmation required using ssh-askpass(1) before each operation

 that changes the multiplexing state (e.g. opening a new session).

 Refer to the description of ControlMaster in ssh_config(5) for

 details.

 -m mac_spec

 A comma-separated list of MAC (message authentication code) algo?

 rithms, specified in order of preference. See the MACs keyword

 for more information.

 -N Do not execute a remote command. This is useful for just for?

 warding ports. Refer to the description of SessionType in

 ssh_config(5) for details.

 -n Redirects stdin from /dev/null (actually, prevents reading from

 stdin). This must be used when ssh is run in the background. A

 common trick is to use this to run X11 programs on a remote ma?

 chine. For example, ssh -n shadows.cs.hut.fi emacs & will start

 an emacs on shadows.cs.hut.fi, and the X11 connection will be au?

 tomatically forwarded over an encrypted channel. The ssh program

 will be put in the background. (This does not work if ssh needs

 to ask for a password or passphrase; see also the -f option.)

 Refer to the description of StdinNull in ssh_config(5) for de?

 tails.

 -O ctl_cmd

 Control an active connection multiplexing master process. When

 the -O option is specified, the ctl_cmd argument is interpreted

 and passed to the master process. Valid commands are: ?check? Page 6/26

 (check that the master process is running), ?forward? (request

 forwardings without command execution), ?cancel? (cancel forward?

 ings), ?exit? (request the master to exit), and ?stop? (request

 the master to stop accepting further multiplexing requests).

 -o option

 Can be used to give options in the format used in the configura?

 tion file. This is useful for specifying options for which there

 is no separate command-line flag. For full details of the op?

 tions listed below, and their possible values, see ssh_config(5).

 AddKeysToAgent

 AddressFamily

 BatchMode

 BindAddress

 BindInterface

 CanonicalDomains

 CanonicalizeFallbackLocal

 CanonicalizeHostname

 CanonicalizeMaxDots

 CanonicalizePermittedCNAMEs

 CASignatureAlgorithms

 CertificateFile

 CheckHostIP

 Ciphers

 ClearAllForwardings

 Compression

 ConnectionAttempts

 ConnectTimeout

 ControlMaster

 ControlPath

 ControlPersist

 DynamicForward

 EnableSSHKeysign

 EscapeChar Page 7/26

 ExitOnForwardFailure

 FingerprintHash

 ForkAfterAuthentication

 ForwardAgent

 ForwardX11

 ForwardX11Timeout

 ForwardX11Trusted

 GatewayPorts

 GlobalKnownHostsFile

 GSSAPIAuthentication

 GSSAPIKeyExchange

 GSSAPIClientIdentity

 GSSAPIDelegateCredentials

 GSSAPIKexAlgorithms

 GSSAPIRenewalForcesRekey

 GSSAPIServerIdentity

 GSSAPITrustDns

 HashKnownHosts

 Host

 HostbasedAcceptedAlgorithms

 HostbasedAuthentication

 HostKeyAlgorithms

 HostKeyAlias

 Hostname

 IdentitiesOnly

 IdentityAgent

 IdentityFile

 IgnoreUnknown

 Include

 IPQoS

 KbdInteractiveAuthentication

 KbdInteractiveDevices

 KexAlgorithms Page 8/26

 KnownHostsCommand

 LocalCommand

 LocalForward

 LogLevel

 LogVerbose

 MACs

 Match

 NoHostAuthenticationForLocalhost

 NumberOfPasswordPrompts

 PasswordAuthentication

 PermitLocalCommand

 PermitRemoteOpen

 PKCS11Provider

 Port

 PreferredAuthentications

 ProxyCommand

 ProxyJump

 ProxyUseFdpass

 PubkeyAcceptedAlgorithms

 PubkeyAuthentication

 RekeyLimit

 RemoteCommand

 RemoteForward

 RequestTTY

 RevokedHostKeys

 SecurityKeyProvider

 RequiredRSASize

 SendEnv

 ServerAliveInterval

 ServerAliveCountMax

 SessionType

 SetEnv

 StdinNull Page 9/26

 StreamLocalBindMask

 StreamLocalBindUnlink

 StrictHostKeyChecking

 SyslogFacility

 TCPKeepAlive

 Tunnel

 TunnelDevice

 UpdateHostKeys

 User

 UserKnownHostsFile

 VerifyHostKeyDNS

 VisualHostKey

 XAuthLocation

 -p port

 Port to connect to on the remote host. This can be specified on

 a per-host basis in the configuration file.

 -Q query_option

 Queries for the algorithms supported by one of the following fea?

 tures: cipher (supported symmetric ciphers), cipher-auth (sup?

 ported symmetric ciphers that support authenticated encryption),

 help (supported query terms for use with the -Q flag), mac (sup?

 ported message integrity codes), kex (key exchange algorithms),

 kex-gss (GSSAPI key exchange algorithms), key (key types),

 key-cert (certificate key types), key-plain (non-certificate key

 types), key-sig (all key types and signature algorithms),

 protocol-version (supported SSH protocol versions), and sig (sup?

 ported signature algorithms). Alternatively, any keyword from

 ssh_config(5) or sshd_config(5) that takes an algorithm list may

 be used as an alias for the corresponding query_option.

 -q Quiet mode. Causes most warning and diagnostic messages to be

 suppressed.

 -R [bind_address:]port:host:hostport

 -R [bind_address:]port:local_socket Page 10/26

 -R remote_socket:host:hostport

 -R remote_socket:local_socket

 -R [bind_address:]port

 Specifies that connections to the given TCP port or Unix socket

 on the remote (server) host are to be forwarded to the local

 side.

 This works by allocating a socket to listen to either a TCP port

 or to a Unix socket on the remote side. Whenever a connection is

 made to this port or Unix socket, the connection is forwarded

 over the secure channel, and a connection is made from the local

 machine to either an explicit destination specified by host port

 hostport, or local_socket, or, if no explicit destination was

 specified, ssh will act as a SOCKS 4/5 proxy and forward connec?

 tions to the destinations requested by the remote SOCKS client.

 Port forwardings can also be specified in the configuration file.

 Privileged ports can be forwarded only when logging in as root on

 the remote machine. IPv6 addresses can be specified by enclosing

 the address in square brackets.

 By default, TCP listening sockets on the server will be bound to

 the loopback interface only. This may be overridden by specify?

 ing a bind_address. An empty bind_address, or the address ?*?,

 indicates that the remote socket should listen on all interfaces.

 Specifying a remote bind_address will only succeed if the

 server's GatewayPorts option is enabled (see sshd_config(5)).

 If the port argument is ?0?, the listen port will be dynamically

 allocated on the server and reported to the client at run time.

 When used together with -O forward the allocated port will be

 printed to the standard output.

 -S ctl_path

 Specifies the location of a control socket for connection shar?

 ing, or the string ?none? to disable connection sharing. Refer

 to the description of ControlPath and ControlMaster in

 ssh_config(5) for details. Page 11/26

 -s May be used to request invocation of a subsystem on the remote

 system. Subsystems facilitate the use of SSH as a secure trans?

 port for other applications (e.g. sftp(1)). The subsystem is

 specified as the remote command. Refer to the description of

 SessionType in ssh_config(5) for details.

 -T Disable pseudo-terminal allocation.

 -t Force pseudo-terminal allocation. This can be used to execute

 arbitrary screen-based programs on a remote machine, which can be

 very useful, e.g. when implementing menu services. Multiple -t

 options force tty allocation, even if ssh has no local tty.

 -V Display the version number and exit.

 -v Verbose mode. Causes ssh to print debugging messages about its

 progress. This is helpful in debugging connection, authentica?

 tion, and configuration problems. Multiple -v options increase

 the verbosity. The maximum is 3.

 -W host:port

 Requests that standard input and output on the client be for?

 warded to host on port over the secure channel. Implies -N, -T,

 ExitOnForwardFailure and ClearAllForwardings, though these can be

 overridden in the configuration file or using -o command line op?

 tions.

 -w local_tun[:remote_tun]

 Requests tunnel device forwarding with the specified tun(4) de?

 vices between the client (local_tun) and the server (remote_tun).

 The devices may be specified by numerical ID or the keyword

 ?any?, which uses the next available tunnel device. If

 remote_tun is not specified, it defaults to ?any?. See also the

 Tunnel and TunnelDevice directives in ssh_config(5).

 If the Tunnel directive is unset, it will be set to the default

 tunnel mode, which is ?point-to-point?. If a different Tunnel

 forwarding mode it desired, then it should be specified before

 -w.

 -X Enables X11 forwarding. This can also be specified on a per-host Page 12/26

 basis in a configuration file.

 X11 forwarding should be enabled with caution. Users with the

 ability to bypass file permissions on the remote host (for the

 user's X authorization database) can access the local X11 display

 through the forwarded connection. An attacker may then be able

 to perform activities such as keystroke monitoring.

 For this reason, X11 forwarding is subjected to X11 SECURITY ex?

 tension restrictions by default. Please refer to the ssh -Y op?

 tion and the ForwardX11Trusted directive in ssh_config(5) for

 more information.

 -x Disables X11 forwarding.

 -Y Enables trusted X11 forwarding. Trusted X11 forwardings are not

 subjected to the X11 SECURITY extension controls.

 -y Send log information using the syslog(3) system module. By de?

 fault this information is sent to stderr.

 ssh may additionally obtain configuration data from a per-user configura?

 tion file and a system-wide configuration file. The file format and con?

 figuration options are described in ssh_config(5).

AUTHENTICATION

 The OpenSSH SSH client supports SSH protocol 2.

 The methods available for authentication are: GSSAPI-based authentica?

 tion, host-based authentication, public key authentication, keyboard-in?

 teractive authentication, and password authentication. Authentication

 methods are tried in the order specified above, though

 PreferredAuthentications can be used to change the default order.

 Host-based authentication works as follows: If the machine the user logs

 in from is listed in /etc/hosts.equiv or /etc/ssh/shosts.equiv on the re?

 mote machine, the user is non-root and the user names are the same on

 both sides, or if the files ~/.rhosts or ~/.shosts exist in the user's

 home directory on the remote machine and contain a line containing the

 name of the client machine and the name of the user on that machine, the

 user is considered for login. Additionally, the server must be able to

 verify the client's host key (see the description of Page 13/26

 /etc/ssh/ssh_known_hosts and ~/.ssh/known_hosts, below) for login to be

 permitted. This authentication method closes security holes due to IP

 spoofing, DNS spoofing, and routing spoofing. [Note to the administra?

 tor: /etc/hosts.equiv, ~/.rhosts, and the rlogin/rsh protocol in general,

 are inherently insecure and should be disabled if security is desired.]

 Public key authentication works as follows: The scheme is based on pub?

 lic-key cryptography, using cryptosystems where encryption and decryption

 are done using separate keys, and it is unfeasible to derive the decryp?

 tion key from the encryption key. The idea is that each user creates a

 public/private key pair for authentication purposes. The server knows

 the public key, and only the user knows the private key. ssh implements

 public key authentication protocol automatically, using one of the DSA,

 ECDSA, Ed25519 or RSA algorithms. The HISTORY section of ssl(8) contains

 a brief discussion of the DSA and RSA algorithms.

 The file ~/.ssh/authorized_keys lists the public keys that are permitted

 for logging in. When the user logs in, the ssh program tells the server

 which key pair it would like to use for authentication. The client

 proves that it has access to the private key and the server checks that

 the corresponding public key is authorized to accept the account.

 The server may inform the client of errors that prevented public key au?

 thentication from succeeding after authentication completes using a dif?

 ferent method. These may be viewed by increasing the LogLevel to DEBUG

 or higher (e.g. by using the -v flag).

 The user creates their key pair by running ssh-keygen(1). This stores

 the private key in ~/.ssh/id_dsa (DSA), ~/.ssh/id_ecdsa (ECDSA),

 ~/.ssh/id_ecdsa_sk (authenticator-hosted ECDSA), ~/.ssh/id_ed25519

 (Ed25519), ~/.ssh/id_ed25519_sk (authenticator-hosted Ed25519), or

 ~/.ssh/id_rsa (RSA) and stores the public key in ~/.ssh/id_dsa.pub (DSA),

 ~/.ssh/id_ecdsa.pub (ECDSA), ~/.ssh/id_ecdsa_sk.pub (authenticator-hosted

 ECDSA), ~/.ssh/id_ed25519.pub (Ed25519), ~/.ssh/id_ed25519_sk.pub (au?

 thenticator-hosted Ed25519), or ~/.ssh/id_rsa.pub (RSA) in the user's

 home directory. The user should then copy the public key to

 ~/.ssh/authorized_keys in their home directory on the remote machine. Page 14/26

 The authorized_keys file corresponds to the conventional ~/.rhosts file,

 and has one key per line, though the lines can be very long. After this,

 the user can log in without giving the password.

 A variation on public key authentication is available in the form of cer?

 tificate authentication: instead of a set of public/private keys, signed

 certificates are used. This has the advantage that a single trusted cer?

 tification authority can be used in place of many public/private keys.

 See the CERTIFICATES section of ssh-keygen(1) for more information.

 The most convenient way to use public key or certificate authentication

 may be with an authentication agent. See ssh-agent(1) and (optionally)

 the AddKeysToAgent directive in ssh_config(5) for more information.

 Keyboard-interactive authentication works as follows: The server sends an

 arbitrary "challenge" text and prompts for a response, possibly multiple

 times. Examples of keyboard-interactive authentication include BSD Au?

 thentication (see login.conf(5)) and PAM (some non-OpenBSD systems).

 Finally, if other authentication methods fail, ssh prompts the user for a

 password. The password is sent to the remote host for checking; however,

 since all communications are encrypted, the password cannot be seen by

 someone listening on the network.

 ssh automatically maintains and checks a database containing identifica?

 tion for all hosts it has ever been used with. Host keys are stored in

 ~/.ssh/known_hosts in the user's home directory. Additionally, the file

 /etc/ssh/ssh_known_hosts is automatically checked for known hosts. Any

 new hosts are automatically added to the user's file. If a host's iden?

 tification ever changes, ssh warns about this and disables password au?

 thentication to prevent server spoofing or man-in-the-middle attacks,

 which could otherwise be used to circumvent the encryption. The

 StrictHostKeyChecking option can be used to control logins to machines

 whose host key is not known or has changed.

 When the user's identity has been accepted by the server, the server ei?

 ther executes the given command in a non-interactive session or, if no

 command has been specified, logs into the machine and gives the user a

 normal shell as an interactive session. All communication with the re? Page 15/26

 mote command or shell will be automatically encrypted.

 If an interactive session is requested ssh by default will only request a

 pseudo-terminal (pty) for interactive sessions when the client has one.

 The flags -T and -t can be used to override this behaviour.

 If a pseudo-terminal has been allocated the user may use the escape char?

 acters noted below.

 If no pseudo-terminal has been allocated, the session is transparent and

 can be used to reliably transfer binary data. On most systems, setting

 the escape character to ?none? will also make the session transparent

 even if a tty is used.

 The session terminates when the command or shell on the remote machine

 exits and all X11 and TCP connections have been closed.

ESCAPE CHARACTERS

 When a pseudo-terminal has been requested, ssh supports a number of func?

 tions through the use of an escape character.

 A single tilde character can be sent as ~~ or by following the tilde by a

 character other than those described below. The escape character must

 always follow a newline to be interpreted as special. The escape charac?

 ter can be changed in configuration files using the EscapeChar configura?

 tion directive or on the command line by the -e option.

 The supported escapes (assuming the default ?~?) are:

 ~. Disconnect.

 ~^Z Background ssh.

 ~# List forwarded connections.

 ~& Background ssh at logout when waiting for forwarded connection /

 X11 sessions to terminate.

 ~? Display a list of escape characters.

 ~B Send a BREAK to the remote system (only useful if the peer sup?

 ports it).

 ~C Open command line. Currently this allows the addition of port

 forwardings using the -L, -R and -D options (see above). It also

 allows the cancellation of existing port-forwardings with

 -KL[bind_address:]port for local, -KR[bind_address:]port for re? Page 16/26

 mote and -KD[bind_address:]port for dynamic port-forwardings.

 !command allows the user to execute a local command if the

 PermitLocalCommand option is enabled in ssh_config(5). Basic

 help is available, using the -h option.

 ~R Request rekeying of the connection (only useful if the peer sup?

 ports it).

 ~V Decrease the verbosity (LogLevel) when errors are being written

 to stderr.

 ~v Increase the verbosity (LogLevel) when errors are being written

 to stderr.

TCP FORWARDING

 Forwarding of arbitrary TCP connections over a secure channel can be

 specified either on the command line or in a configuration file. One

 possible application of TCP forwarding is a secure connection to a mail

 server; another is going through firewalls.

 In the example below, we look at encrypting communication for an IRC

 client, even though the IRC server it connects to does not directly sup?

 port encrypted communication. This works as follows: the user connects

 to the remote host using ssh, specifying the ports to be used to forward

 the connection. After that it is possible to start the program locally,

 and ssh will encrypt and forward the connection to the remote server.

 The following example tunnels an IRC session from the client to an IRC

 server at ?server.example.com?, joining channel ?#users?, nickname

 ?pinky?, using the standard IRC port, 6667:

 $ ssh -f -L 6667:localhost:6667 server.example.com sleep 10

 $ irc -c '#users' pinky IRC/127.0.0.1

 The -f option backgrounds ssh and the remote command ?sleep 10? is speci?

 fied to allow an amount of time (10 seconds, in the example) to start the

 program which is going to use the tunnel. If no connections are made

 within the time specified, ssh will exit.

X11 FORWARDING

 If the ForwardX11 variable is set to ?yes? (or see the description of the

 -X, -x, and -Y options above) and the user is using X11 (the DISPLAY en? Page 17/26

 vironment variable is set), the connection to the X11 display is automat?

 ically forwarded to the remote side in such a way that any X11 programs

 started from the shell (or command) will go through the encrypted chan?

 nel, and the connection to the real X server will be made from the local

 machine. The user should not manually set DISPLAY. Forwarding of X11

 connections can be configured on the command line or in configuration

 files.

 The DISPLAY value set by ssh will point to the server machine, but with a

 display number greater than zero. This is normal, and happens because

 ssh creates a ?proxy? X server on the server machine for forwarding the

 connections over the encrypted channel.

 ssh will also automatically set up Xauthority data on the server machine.

 For this purpose, it will generate a random authorization cookie, store

 it in Xauthority on the server, and verify that any forwarded connections

 carry this cookie and replace it by the real cookie when the connection

 is opened. The real authentication cookie is never sent to the server

 machine (and no cookies are sent in the plain).

 If the ForwardAgent variable is set to ?yes? (or see the description of

 the -A and -a options above) and the user is using an authentication

 agent, the connection to the agent is automatically forwarded to the re?

 mote side.

VERIFYING HOST KEYS

 When connecting to a server for the first time, a fingerprint of the

 server's public key is presented to the user (unless the option

 StrictHostKeyChecking has been disabled). Fingerprints can be determined

 using ssh-keygen(1):

 $ ssh-keygen -l -f /etc/ssh/ssh_host_rsa_key

 If the fingerprint is already known, it can be matched and the key can be

 accepted or rejected. If only legacy (MD5) fingerprints for the server

 are available, the ssh-keygen(1) -E option may be used to downgrade the

 fingerprint algorithm to match.

 Because of the difficulty of comparing host keys just by looking at fin?

 gerprint strings, there is also support to compare host keys visually, Page 18/26

 using random art. By setting the VisualHostKey option to ?yes?, a small

 ASCII graphic gets displayed on every login to a server, no matter if the

 session itself is interactive or not. By learning the pattern a known

 server produces, a user can easily find out that the host key has changed

 when a completely different pattern is displayed. Because these patterns

 are not unambiguous however, a pattern that looks similar to the pattern

 remembered only gives a good probability that the host key is the same,

 not guaranteed proof.

 To get a listing of the fingerprints along with their random art for all

 known hosts, the following command line can be used:

 $ ssh-keygen -lv -f ~/.ssh/known_hosts

 If the fingerprint is unknown, an alternative method of verification is

 available: SSH fingerprints verified by DNS. An additional resource

 record (RR), SSHFP, is added to a zonefile and the connecting client is

 able to match the fingerprint with that of the key presented.

 In this example, we are connecting a client to a server,

 ?host.example.com?. The SSHFP resource records should first be added to

 the zonefile for host.example.com:

 $ ssh-keygen -r host.example.com.

 The output lines will have to be added to the zonefile. To check that

 the zone is answering fingerprint queries:

 $ dig -t SSHFP host.example.com

 Finally the client connects:

 $ ssh -o "VerifyHostKeyDNS ask" host.example.com

 [...]

 Matching host key fingerprint found in DNS.

 Are you sure you want to continue connecting (yes/no)?

 See the VerifyHostKeyDNS option in ssh_config(5) for more information.

SSH-BASED VIRTUAL PRIVATE NETWORKS

 ssh contains support for Virtual Private Network (VPN) tunnelling using

 the tun(4) network pseudo-device, allowing two networks to be joined se?

 curely. The sshd_config(5) configuration option PermitTunnel controls

 whether the server supports this, and at what level (layer 2 or 3 traf? Page 19/26

 fic).

 The following example would connect client network 10.0.50.0/24 with re?

 mote network 10.0.99.0/24 using a point-to-point connection from 10.1.1.1

 to 10.1.1.2, provided that the SSH server running on the gateway to the

 remote network, at 192.168.1.15, allows it.

 On the client:

 # ssh -f -w 0:1 192.168.1.15 true

 # ifconfig tun0 10.1.1.1 10.1.1.2 netmask 255.255.255.252

 # route add 10.0.99.0/24 10.1.1.2

 On the server:

 # ifconfig tun1 10.1.1.2 10.1.1.1 netmask 255.255.255.252

 # route add 10.0.50.0/24 10.1.1.1

 Client access may be more finely tuned via the /root/.ssh/authorized_keys

 file (see below) and the PermitRootLogin server option. The following

 entry would permit connections on tun(4) device 1 from user ?jane? and on

 tun device 2 from user ?john?, if PermitRootLogin is set to

 ?forced-commands-only?:

 tunnel="1",command="sh /etc/netstart tun1" ssh-rsa ... jane

 tunnel="2",command="sh /etc/netstart tun2" ssh-rsa ... john

 Since an SSH-based setup entails a fair amount of overhead, it may be

 more suited to temporary setups, such as for wireless VPNs. More perma?

 nent VPNs are better provided by tools such as ipsecctl(8) and

 isakmpd(8).

ENVIRONMENT

 ssh will normally set the following environment variables:

 DISPLAY The DISPLAY variable indicates the location of the

 X11 server. It is automatically set by ssh to

 point to a value of the form ?hostname:n?, where

 ?hostname? indicates the host where the shell runs,

 and ?n? is an integer ? 1. ssh uses this special

 value to forward X11 connections over the secure

 channel. The user should normally not set DISPLAY

 explicitly, as that will render the X11 connection Page 20/26

 insecure (and will require the user to manually

 copy any required authorization cookies).

 HOME Set to the path of the user's home directory.

 LOGNAME Synonym for USER; set for compatibility with sys?

 tems that use this variable.

 MAIL Set to the path of the user's mailbox.

 PATH Set to the default PATH, as specified when compil?

 ing ssh.

 SSH_ASKPASS If ssh needs a passphrase, it will read the

 passphrase from the current terminal if it was run

 from a terminal. If ssh does not have a terminal

 associated with it but DISPLAY and SSH_ASKPASS are

 set, it will execute the program specified by

 SSH_ASKPASS and open an X11 window to read the

 passphrase. This is particularly useful when call?

 ing ssh from a .xsession or related script. (Note

 that on some machines it may be necessary to redi?

 rect the input from /dev/null to make this work.)

 SSH_ASKPASS_REQUIRE Allows further control over the use of an askpass

 program. If this variable is set to ?never? then

 ssh will never attempt to use one. If it is set to

 ?prefer?, then ssh will prefer to use the askpass

 program instead of the TTY when requesting pass?

 words. Finally, if the variable is set to ?force?,

 then the askpass program will be used for all

 passphrase input regardless of whether DISPLAY is

 set.

 SSH_AUTH_SOCK Identifies the path of a UNIX-domain socket used to

 communicate with the agent.

 SSH_CONNECTION Identifies the client and server ends of the con?

 nection. The variable contains four space-sepa?

 rated values: client IP address, client port num?

 ber, server IP address, and server port number. Page 21/26

 SSH_ORIGINAL_COMMAND This variable contains the original command line if

 a forced command is executed. It can be used to

 extract the original arguments.

 SSH_TTY This is set to the name of the tty (path to the de?

 vice) associated with the current shell or command.

 If the current session has no tty, this variable is

 not set.

 SSH_TUNNEL Optionally set by sshd(8) to contain the interface

 names assigned if tunnel forwarding was requested

 by the client.

 SSH_USER_AUTH Optionally set by sshd(8), this variable may con?

 tain a pathname to a file that lists the authenti?

 cation methods successfully used when the session

 was established, including any public keys that

 were used.

 TZ This variable is set to indicate the present time

 zone if it was set when the daemon was started

 (i.e. the daemon passes the value on to new connec?

 tions).

 USER Set to the name of the user logging in.

 Additionally, ssh reads ~/.ssh/environment, and adds lines of the format

 ?VARNAME=value? to the environment if the file exists and users are al?

 lowed to change their environment. For more information, see the

 PermitUserEnvironment option in sshd_config(5).

FILES

 ~/.rhosts

 This file is used for host-based authentication (see above). On

 some machines this file may need to be world-readable if the

 user's home directory is on an NFS partition, because sshd(8)

 reads it as root. Additionally, this file must be owned by the

 user, and must not have write permissions for anyone else. The

 recommended permission for most machines is read/write for the

 user, and not accessible by others. Page 22/26

 ~/.shosts

 This file is used in exactly the same way as .rhosts, but allows

 host-based authentication without permitting login with

 rlogin/rsh.

 ~/.ssh/

 This directory is the default location for all user-specific con?

 figuration and authentication information. There is no general

 requirement to keep the entire contents of this directory secret,

 but the recommended permissions are read/write/execute for the

 user, and not accessible by others.

 ~/.ssh/authorized_keys

 Lists the public keys (DSA, ECDSA, Ed25519, RSA) that can be used

 for logging in as this user. The format of this file is de?

 scribed in the sshd(8) manual page. This file is not highly sen?

 sitive, but the recommended permissions are read/write for the

 user, and not accessible by others.

 ~/.ssh/config

 This is the per-user configuration file. The file format and

 configuration options are described in ssh_config(5). Because of

 the potential for abuse, this file must have strict permissions:

 read/write for the user, and not writable by others.

 ~/.ssh/environment

 Contains additional definitions for environment variables; see

 ENVIRONMENT, above.

 ~/.ssh/id_dsa

 ~/.ssh/id_ecdsa

 ~/.ssh/id_ecdsa_sk

 ~/.ssh/id_ed25519

 ~/.ssh/id_ed25519_sk

 ~/.ssh/id_rsa

 Contains the private key for authentication. These files contain

 sensitive data and should be readable by the user but not acces?

 sible by others (read/write/execute). ssh will simply ignore a Page 23/26

 private key file if it is accessible by others. It is possible

 to specify a passphrase when generating the key which will be

 used to encrypt the sensitive part of this file using AES-128.

 ~/.ssh/id_dsa.pub

 ~/.ssh/id_ecdsa.pub

 ~/.ssh/id_ecdsa_sk.pub

 ~/.ssh/id_ed25519.pub

 ~/.ssh/id_ed25519_sk.pub

 ~/.ssh/id_rsa.pub

 Contains the public key for authentication. These files are not

 sensitive and can (but need not) be readable by anyone.

 ~/.ssh/known_hosts

 Contains a list of host keys for all hosts the user has logged

 into that are not already in the systemwide list of known host

 keys. See sshd(8) for further details of the format of this

 file.

 ~/.ssh/rc

 Commands in this file are executed by ssh when the user logs in,

 just before the user's shell (or command) is started. See the

 sshd(8) manual page for more information.

 /etc/hosts.equiv

 This file is for host-based authentication (see above). It

 should only be writable by root.

 /etc/ssh/shosts.equiv

 This file is used in exactly the same way as hosts.equiv, but al?

 lows host-based authentication without permitting login with

 rlogin/rsh.

 /etc/ssh/ssh_config

 Systemwide configuration file. The file format and configuration

 options are described in ssh_config(5).

 /etc/ssh/ssh_host_key

 /etc/ssh/ssh_host_dsa_key

 /etc/ssh/ssh_host_ecdsa_key Page 24/26

 /etc/ssh/ssh_host_ed25519_key

 /etc/ssh/ssh_host_rsa_key

 These files contain the private parts of the host keys and are

 used for host-based authentication.

 /etc/ssh/ssh_known_hosts

 Systemwide list of known host keys. This file should be prepared

 by the system administrator to contain the public host keys of

 all machines in the organization. It should be world-readable.

 See sshd(8) for further details of the format of this file.

 /etc/ssh/sshrc

 Commands in this file are executed by ssh when the user logs in,

 just before the user's shell (or command) is started. See the

 sshd(8) manual page for more information.

EXIT STATUS

 ssh exits with the exit status of the remote command or with 255 if an

 error occurred.

IPV6

 IPv6 address can be used everywhere where IPv4 address. In all entries

 must be the IPv6 address enclosed in square brackets. Note: The square

 brackets are metacharacters for the shell and must be escaped in shell.

SEE ALSO

 scp(1), sftp(1), ssh-add(1), ssh-agent(1), ssh-keygen(1), ssh-keyscan(1),

 tun(4), ssh_config(5), ssh-keysign(8), sshd(8)

STANDARDS

 S. Lehtinen and C. Lonvick, The Secure Shell (SSH) Protocol Assigned

 Numbers, RFC 4250, January 2006.

 T. Ylonen and C. Lonvick, The Secure Shell (SSH) Protocol Architecture,

 RFC 4251, January 2006.

 T. Ylonen and C. Lonvick, The Secure Shell (SSH) Authentication Protocol,

 RFC 4252, January 2006.

 T. Ylonen and C. Lonvick, The Secure Shell (SSH) Transport Layer

 Protocol, RFC 4253, January 2006.

 T. Ylonen and C. Lonvick, The Secure Shell (SSH) Connection Protocol, RFC Page 25/26

 4254, January 2006.

 J. Schlyter and W. Griffin, Using DNS to Securely Publish Secure Shell

 (SSH) Key Fingerprints, RFC 4255, January 2006.

 F. Cusack and M. Forssen, Generic Message Exchange Authentication for the

 Secure Shell Protocol (SSH), RFC 4256, January 2006.

 J. Galbraith and P. Remaker, The Secure Shell (SSH) Session Channel Break

 Extension, RFC 4335, January 2006.

 M. Bellare, T. Kohno, and C. Namprempre, The Secure Shell (SSH) Transport

 Layer Encryption Modes, RFC 4344, January 2006.

 B. Harris, Improved Arcfour Modes for the Secure Shell (SSH) Transport

 Layer Protocol, RFC 4345, January 2006.

 M. Friedl, N. Provos, and W. Simpson, Diffie-Hellman Group Exchange for

 the Secure Shell (SSH) Transport Layer Protocol, RFC 4419, March 2006.

 J. Galbraith and R. Thayer, The Secure Shell (SSH) Public Key File

 Format, RFC 4716, November 2006.

 D. Stebila and J. Green, Elliptic Curve Algorithm Integration in the

 Secure Shell Transport Layer, RFC 5656, December 2009.

 A. Perrig and D. Song, Hash Visualization: a New Technique to improve

 Real-World Security, 1999, International Workshop on Cryptographic

 Techniques and E-Commerce (CrypTEC '99).

AUTHORS

 OpenSSH is a derivative of the original and free ssh 1.2.12 release by

 Tatu Ylonen. Aaron Campbell, Bob Beck, Markus Friedl, Niels Provos, Theo

 de Raadt and Dug Song removed many bugs, re-added newer features and cre?

 ated OpenSSH. Markus Friedl contributed the support for SSH protocol

 versions 1.5 and 2.0.

BSD July 28, 2021 BSD

Page 26/26

