
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'ssh-keygen.1' command

$ man ssh-keygen.1

SSH-KEYGEN(1) BSD General Commands Manual SSH-KEYGEN(1)

NAME

 ssh-keygen ? OpenSSH authentication key utility

SYNOPSIS

 ssh-keygen [-q] [-a rounds] [-b bits] [-C comment] [-f output_keyfile]

 [-m format] [-N new_passphrase] [-O option]

 [-t dsa | ecdsa | ecdsa-sk | ed25519 | ed25519-sk | rsa]

 [-w provider] [-Z cipher]

 ssh-keygen -p [-a rounds] [-f keyfile] [-m format] [-N new_passphrase]

 [-P old_passphrase] [-Z cipher]

 ssh-keygen -i [-f input_keyfile] [-m key_format]

 ssh-keygen -e [-f input_keyfile] [-m key_format]

 ssh-keygen -y [-f input_keyfile]

 ssh-keygen -c [-a rounds] [-C comment] [-f keyfile] [-P passphrase]

 ssh-keygen -l [-v] [-E fingerprint_hash] [-f input_keyfile]

 ssh-keygen -B [-f input_keyfile]

 ssh-keygen -D pkcs11

 ssh-keygen -F hostname [-lv] [-f known_hosts_file]

 ssh-keygen -H [-f known_hosts_file]

 ssh-keygen -K [-a rounds] [-w provider]

 ssh-keygen -R hostname [-f known_hosts_file]

 ssh-keygen -r hostname [-g] [-f input_keyfile]

 ssh-keygen -M generate [-O option] output_file Page 1/21

 ssh-keygen -M screen [-f input_file] [-O option] output_file

 ssh-keygen -I certificate_identity -s ca_key [-hU] [-D pkcs11_provider]

 [-n principals] [-O option] [-V validity_interval]

 [-z serial_number] file ...

 ssh-keygen -L [-f input_keyfile]

 ssh-keygen -A [-a rounds] [-f prefix_path]

 ssh-keygen -k -f krl_file [-u] [-s ca_public] [-z version_number]

 file ...

 ssh-keygen -Q [-l] -f krl_file file ...

 ssh-keygen -Y find-principals [-O option] -s signature_file -f

 allowed_signers_file

 ssh-keygen -Y check-novalidate [-O option] -n namespace -s signature_file

 ssh-keygen -Y sign -f key_file -n namespace file ...

 ssh-keygen -Y verify [-O option] -f allowed_signers_file -I

 signer_identity -n namespace -s signature_file

 [-r revocation_file]

DESCRIPTION

 ssh-keygen generates, manages and converts authentication keys for

 ssh(1). ssh-keygen can create keys for use by SSH protocol version 2.

 The type of key to be generated is specified with the -t option. If in?

 voked without any arguments, ssh-keygen will generate an RSA key.

 ssh-keygen is also used to generate groups for use in Diffie-Hellman

 group exchange (DH-GEX). See the MODULI GENERATION section for details.

 Finally, ssh-keygen can be used to generate and update Key Revocation

 Lists, and to test whether given keys have been revoked by one. See the

 KEY REVOCATION LISTS section for details.

 Normally each user wishing to use SSH with public key authentication runs

 this once to create the authentication key in ~/.ssh/id_dsa,

 ~/.ssh/id_ecdsa, ~/.ssh/id_ecdsa_sk, ~/.ssh/id_ed25519,

 ~/.ssh/id_ed25519_sk or ~/.ssh/id_rsa. Additionally, the system adminis?

 trator may use this to generate host keys, as seen in /etc/rc.

 Normally this program generates the key and asks for a file in which to

 store the private key. The public key is stored in a file with the same Page 2/21

 name but ?.pub? appended. The program also asks for a passphrase. The

 passphrase may be empty to indicate no passphrase (host keys must have an

 empty passphrase), or it may be a string of arbitrary length. A

 passphrase is similar to a password, except it can be a phrase with a se?

 ries of words, punctuation, numbers, whitespace, or any string of charac?

 ters you want. Good passphrases are 10-30 characters long, are not sim?

 ple sentences or otherwise easily guessable (English prose has only 1-2

 bits of entropy per character, and provides very bad passphrases), and

 contain a mix of upper and lowercase letters, numbers, and non-alphanu?

 meric characters. The passphrase can be changed later by using the -p

 option.

 There is no way to recover a lost passphrase. If the passphrase is lost

 or forgotten, a new key must be generated and the corresponding public

 key copied to other machines.

 ssh-keygen will by default write keys in an OpenSSH-specific format.

 This format is preferred as it offers better protection for keys at rest

 as well as allowing storage of key comments within the private key file

 itself. The key comment may be useful to help identify the key. The

 comment is initialized to ?user@host? when the key is created, but can be

 changed using the -c option.

 It is still possible for ssh-keygen to write the previously-used PEM for?

 mat private keys using the -m flag. This may be used when generating new

 keys, and existing new-format keys may be converted using this option in

 conjunction with the -p (change passphrase) flag.

 After a key is generated, ssh-keygen will ask where the keys should be

 placed to be activated.

 The options are as follows:

 -A For each of the key types (rsa, dsa, ecdsa and ed25519) for which

 host keys do not exist, generate the host keys with the default

 key file path, an empty passphrase, default bits for the key

 type, and default comment. If -f has also been specified, its

 argument is used as a prefix to the default path for the result?

 ing host key files. This is used by /etc/rc to generate new host Page 3/21

 keys.

 -a rounds

 When saving a private key, this option specifies the number of

 KDF (key derivation function, currently bcrypt_pbkdf(3)) rounds

 used. Higher numbers result in slower passphrase verification

 and increased resistance to brute-force password cracking (should

 the keys be stolen). The default is 16 rounds.

 -B Show the bubblebabble digest of specified private or public key

 file.

 -b bits

 Specifies the number of bits in the key to create. For RSA keys,

 the minimum size is 1024 bits and the default is 3072 bits. Gen?

 erally, 3072 bits is considered sufficient. DSA keys must be ex?

 actly 1024 bits as specified by FIPS 186-2. For ECDSA keys, the

 -b flag determines the key length by selecting from one of three

 elliptic curve sizes: 256, 384 or 521 bits. Attempting to use

 bit lengths other than these three values for ECDSA keys will

 fail. ECDSA-SK, Ed25519 and Ed25519-SK keys have a fixed length

 and the -b flag will be ignored.

 -C comment

 Provides a new comment.

 -c Requests changing the comment in the private and public key

 files. The program will prompt for the file containing the pri?

 vate keys, for the passphrase if the key has one, and for the new

 comment.

 -D pkcs11

 Download the public keys provided by the PKCS#11 shared library

 pkcs11. When used in combination with -s, this option indicates

 that a CA key resides in a PKCS#11 token (see the CERTIFICATES

 section for details).

 -E fingerprint_hash

 Specifies the hash algorithm used when displaying key finger?

 prints. Valid options are: ?md5? and ?sha256?. The default is Page 4/21

 ?sha256?.

 -e This option will read a private or public OpenSSH key file and

 print to stdout a public key in one of the formats specified by

 the -m option. The default export format is ?RFC4716?. This op?

 tion allows exporting OpenSSH keys for use by other programs, in?

 cluding several commercial SSH implementations.

 -F hostname | [hostname]:port

 Search for the specified hostname (with optional port number) in

 a known_hosts file, listing any occurrences found. This option

 is useful to find hashed host names or addresses and may also be

 used in conjunction with the -H option to print found keys in a

 hashed format.

 -f filename

 Specifies the filename of the key file.

 -g Use generic DNS format when printing fingerprint resource records

 using the -r command.

 -H Hash a known_hosts file. This replaces all hostnames and ad?

 dresses with hashed representations within the specified file;

 the original content is moved to a file with a .old suffix.

 These hashes may be used normally by ssh and sshd, but they do

 not reveal identifying information should the file's contents be

 disclosed. This option will not modify existing hashed hostnames

 and is therefore safe to use on files that mix hashed and non-

 hashed names.

 -h When signing a key, create a host certificate instead of a user

 certificate. Please see the CERTIFICATES section for details.

 -I certificate_identity

 Specify the key identity when signing a public key. Please see

 the CERTIFICATES section for details.

 -i This option will read an unencrypted private (or public) key file

 in the format specified by the -m option and print an OpenSSH

 compatible private (or public) key to stdout. This option allows

 importing keys from other software, including several commercial Page 5/21

 SSH implementations. The default import format is ?RFC4716?.

 -K Download resident keys from a FIDO authenticator. Public and

 private key files will be written to the current directory for

 each downloaded key. If multiple FIDO authenticators are at?

 tached, keys will be downloaded from the first touched authenti?

 cator.

 -k Generate a KRL file. In this mode, ssh-keygen will generate a

 KRL file at the location specified via the -f flag that revokes

 every key or certificate presented on the command line.

 Keys/certificates to be revoked may be specified by public key

 file or using the format described in the KEY REVOCATION LISTS

 section.

 -L Prints the contents of one or more certificates.

 -l Show fingerprint of specified public key file. For RSA and DSA

 keys ssh-keygen tries to find the matching public key file and

 prints its fingerprint. If combined with -v, a visual ASCII art

 representation of the key is supplied with the fingerprint.

 -M generate

 Generate candidate Diffie-Hellman Group Exchange (DH-GEX) parame?

 ters for eventual use by the ?diffie-hellman-group-exchange-*?

 key exchange methods. The numbers generated by this operation

 must be further screened before use. See the MODULI GENERATION

 section for more information.

 -M screen

 Screen candidate parameters for Diffie-Hellman Group Exchange.

 This will accept a list of candidate numbers and test that they

 are safe (Sophie Germain) primes with acceptable group genera?

 tors. The results of this operation may be added to the

 /etc/ssh/moduli file. See the MODULI GENERATION section for more

 information.

 -m key_format

 Specify a key format for key generation, the -i (import), -e (ex?

 port) conversion options, and the -p change passphrase operation. Page 6/21

 The latter may be used to convert between OpenSSH private key and

 PEM private key formats. The supported key formats are:

 ?RFC4716? (RFC 4716/SSH2 public or private key), ?PKCS8? (PKCS8

 public or private key) or ?PEM? (PEM public key). By default

 OpenSSH will write newly-generated private keys in its own for?

 mat, but when converting public keys for export the default for?

 mat is ?RFC4716?. Setting a format of ?PEM? when generating or

 updating a supported private key type will cause the key to be

 stored in the legacy PEM private key format.

 -N new_passphrase

 Provides the new passphrase.

 -n principals

 Specify one or more principals (user or host names) to be in?

 cluded in a certificate when signing a key. Multiple principals

 may be specified, separated by commas. Please see the

 CERTIFICATES section for details.

 -O option

 Specify a key/value option. These are specific to the operation

 that ssh-keygen has been requested to perform.

 When signing certificates, one of the options listed in the

 CERTIFICATES section may be specified here.

 When performing moduli generation or screening, one of the op?

 tions listed in the MODULI GENERATION section may be specified.

 When generating a key that will be hosted on a FIDO authentica?

 tor, this flag may be used to specify key-specific options.

 Those supported at present are:

 application

 Override the default FIDO application/origin string of

 ?ssh:?. This may be useful when generating host or do?

 main-specific resident keys. The specified application

 string must begin with ?ssh:?.

 challenge=path

 Specifies a path to a challenge string that will be Page 7/21

 passed to the FIDO token during key generation. The

 challenge string may be used as part of an out-of-band

 protocol for key enrollment (a random challenge is used

 by default).

 device Explicitly specify a fido(4) device to use, rather than

 letting the token middleware select one.

 no-touch-required

 Indicate that the generated private key should not re?

 quire touch events (user presence) when making signa?

 tures. Note that sshd(8) will refuse such signatures by

 default, unless overridden via an authorized_keys option.

 resident

 Indicate that the key should be stored on the FIDO au?

 thenticator itself. Resident keys may be supported on

 FIDO2 tokens and typically require that a PIN be set on

 the token prior to generation. Resident keys may be

 loaded off the token using ssh-add(1).

 user A username to be associated with a resident key, overrid?

 ing the empty default username. Specifying a username

 may be useful when generating multiple resident keys for

 the same application name.

 verify-required

 Indicate that this private key should require user veri?

 fication for each signature. Not all FIDO tokens support

 this option. Currently PIN authentication is the only

 supported verification method, but other methods may be

 supported in the future.

 write-attestation=path

 May be used at key generation time to record the attesta?

 tion data returned from FIDO tokens during key genera?

 tion. Please note that this information is potentially

 sensitive. By default, this information is discarded.

 When performing signature-related options using the -Y flag, the Page 8/21

 following options are accepted:

 print-pubkey

 Print the full public key to standard output after signa?

 ture verification.

 verify-time=timestamp

 Specifies a time to use when validating signatures in?

 stead of the current time. The time may be specified as

 a date in YYYYMMDD format or a time in YYYYMMDDHHMM[SS]

 format.

 The -O option may be specified multiple times.

 -P passphrase

 Provides the (old) passphrase.

 -p Requests changing the passphrase of a private key file instead of

 creating a new private key. The program will prompt for the file

 containing the private key, for the old passphrase, and twice for

 the new passphrase.

 -Q Test whether keys have been revoked in a KRL. If the -l option

 is also specified then the contents of the KRL will be printed.

 -q Silence ssh-keygen.

 -R hostname | [hostname]:port

 Removes all keys belonging to the specified hostname (with op?

 tional port number) from a known_hosts file. This option is use?

 ful to delete hashed hosts (see the -H option above).

 -r hostname

 Print the SSHFP fingerprint resource record named hostname for

 the specified public key file.

 -s ca_key

 Certify (sign) a public key using the specified CA key. Please

 see the CERTIFICATES section for details.

 When generating a KRL, -s specifies a path to a CA public key

 file used to revoke certificates directly by key ID or serial

 number. See the KEY REVOCATION LISTS section for details.

 -t dsa | ecdsa | ecdsa-sk | ed25519 | ed25519-sk | rsa Page 9/21

 Specifies the type of key to create. The possible values are

 ?dsa?, ?ecdsa?, ?ecdsa-sk?, ?ed25519?, ?ed25519-sk?, or ?rsa?.

 This flag may also be used to specify the desired signature type

 when signing certificates using an RSA CA key. The available RSA

 signature variants are ?ssh-rsa? (SHA1 signatures, not recom?

 mended), ?rsa-sha2-256?, and ?rsa-sha2-512? (the default).

 -U When used in combination with -s, this option indicates that a CA

 key resides in a ssh-agent(1). See the CERTIFICATES section for

 more information.

 -u Update a KRL. When specified with -k, keys listed via the com?

 mand line are added to the existing KRL rather than a new KRL be?

 ing created.

 -V validity_interval

 Specify a validity interval when signing a certificate. A valid?

 ity interval may consist of a single time, indicating that the

 certificate is valid beginning now and expiring at that time, or

 may consist of two times separated by a colon to indicate an ex?

 plicit time interval.

 The start time may be specified as the string ?always? to indi?

 cate the certificate has no specified start time, a date in

 YYYYMMDD format, a time in YYYYMMDDHHMM[SS] format, a relative

 time (to the current time) consisting of a minus sign followed by

 an interval in the format described in the TIME FORMATS section

 of sshd_config(5).

 The end time may be specified as a YYYYMMDD date, a YYYYMMD?

 DHHMM[SS] time, a relative time starting with a plus character or

 the string ?forever? to indicate that the certificate has no ex?

 piry date.

 For example: ?+52w1d? (valid from now to 52 weeks and one day

 from now), ?-4w:+4w? (valid from four weeks ago to four weeks

 from now), ?20100101123000:20110101123000? (valid from 12:30 PM,

 January 1st, 2010 to 12:30 PM, January 1st, 2011), ?-1d:20110101?

 (valid from yesterday to midnight, January 1st, 2011), Page 10/21

 ?-1m:forever? (valid from one minute ago and never expiring).

 -v Verbose mode. Causes ssh-keygen to print debugging messages

 about its progress. This is helpful for debugging moduli genera?

 tion. Multiple -v options increase the verbosity. The maximum

 is 3.

 -w provider

 Specifies a path to a library that will be used when creating

 FIDO authenticator-hosted keys, overriding the default of using

 the internal USB HID support.

 -Y find-principals

 Find the principal(s) associated with the public key of a signa?

 ture, provided using the -s flag in an authorized signers file

 provided using the -f flag. The format of the allowed signers

 file is documented in the ALLOWED SIGNERS section below. If one

 or more matching principals are found, they are returned on stan?

 dard output.

 -Y check-novalidate

 Checks that a signature generated using ssh-keygen -Y sign has a

 valid structure. This does not validate if a signature comes

 from an authorized signer. When testing a signature, ssh-keygen

 accepts a message on standard input and a signature namespace us?

 ing -n. A file containing the corresponding signature must also

 be supplied using the -s flag. Successful testing of the signa?

 ture is signalled by ssh-keygen returning a zero exit status.

 -Y sign

 Cryptographically sign a file or some data using a SSH key. When

 signing, ssh-keygen accepts zero or more files to sign on the

 command-line - if no files are specified then ssh-keygen will

 sign data presented on standard input. Signatures are written to

 the path of the input file with ?.sig? appended, or to standard

 output if the message to be signed was read from standard input.

 The key used for signing is specified using the -f option and may

 refer to either a private key, or a public key with the private Page 11/21

 half available via ssh-agent(1). An additional signature name?

 space, used to prevent signature confusion across different do?

 mains of use (e.g. file signing vs email signing) must be pro?

 vided via the -n flag. Namespaces are arbitrary strings, and may

 include: ?file? for file signing, ?email? for email signing. For

 custom uses, it is recommended to use names following a NAME?

 SPACE@YOUR.DOMAIN pattern to generate unambiguous namespaces.

 -Y verify

 Request to verify a signature generated using ssh-keygen -Y sign

 as described above. When verifying a signature, ssh-keygen ac?

 cepts a message on standard input and a signature namespace using

 -n. A file containing the corresponding signature must also be

 supplied using the -s flag, along with the identity of the signer

 using -I and a list of allowed signers via the -f flag. The for?

 mat of the allowed signers file is documented in the ALLOWED

 SIGNERS section below. A file containing revoked keys can be

 passed using the -r flag. The revocation file may be a KRL or a

 one-per-line list of public keys. Successful verification by an

 authorized signer is signalled by ssh-keygen returning a zero

 exit status.

 -y This option will read a private OpenSSH format file and print an

 OpenSSH public key to stdout.

 -Z cipher

 Specifies the cipher to use for encryption when writing an

 OpenSSH-format private key file. The list of available ciphers

 may be obtained using "ssh -Q cipher". The default is

 ?aes256-ctr?.

 -z serial_number

 Specifies a serial number to be embedded in the certificate to

 distinguish this certificate from others from the same CA. If

 the serial_number is prefixed with a ?+? character, then the se?

 rial number will be incremented for each certificate signed on a

 single command-line. The default serial number is zero. Page 12/21

 When generating a KRL, the -z flag is used to specify a KRL ver?

 sion number.

MODULI GENERATION

 ssh-keygen may be used to generate groups for the Diffie-Hellman Group

 Exchange (DH-GEX) protocol. Generating these groups is a two-step

 process: first, candidate primes are generated using a fast, but memory

 intensive process. These candidate primes are then tested for suitabil?

 ity (a CPU-intensive process).

 Generation of primes is performed using the -M generate option. The de?

 sired length of the primes may be specified by the -O bits option. For

 example:

 # ssh-keygen -M generate -O bits=2048 moduli-2048.candidates

 By default, the search for primes begins at a random point in the desired

 length range. This may be overridden using the -O start option, which

 specifies a different start point (in hex).

 Once a set of candidates have been generated, they must be screened for

 suitability. This may be performed using the -M screen option. In this

 mode ssh-keygen will read candidates from standard input (or a file spec?

 ified using the -f option). For example:

 # ssh-keygen -M screen -f moduli-2048.candidates moduli-2048

 By default, each candidate will be subjected to 100 primality tests.

 This may be overridden using the -O prime-tests option. The DH generator

 value will be chosen automatically for the prime under consideration. If

 a specific generator is desired, it may be requested using the -O

 generator option. Valid generator values are 2, 3, and 5.

 Screened DH groups may be installed in /etc/ssh/moduli. It is important

 that this file contains moduli of a range of bit lengths.

 A number of options are available for moduli generation and screening via

 the -O flag:

 lines=number

 Exit after screening the specified number of lines while perform?

 ing DH candidate screening.

 start-line=line-number Page 13/21

 Start screening at the specified line number while performing DH

 candidate screening.

 checkpoint=filename

 Write the last line processed to the specified file while per?

 forming DH candidate screening. This will be used to skip lines

 in the input file that have already been processed if the job is

 restarted.

 memory=mbytes

 Specify the amount of memory to use (in megabytes) when generat?

 ing candidate moduli for DH-GEX.

 start=hex-value

 Specify start point (in hex) when generating candidate moduli for

 DH-GEX.

 generator=value

 Specify desired generator (in decimal) when testing candidate

 moduli for DH-GEX.

CERTIFICATES

 ssh-keygen supports signing of keys to produce certificates that may be

 used for user or host authentication. Certificates consist of a public

 key, some identity information, zero or more principal (user or host)

 names and a set of options that are signed by a Certification Authority

 (CA) key. Clients or servers may then trust only the CA key and verify

 its signature on a certificate rather than trusting many user/host keys.

 Note that OpenSSH certificates are a different, and much simpler, format

 to the X.509 certificates used in ssl(8).

 ssh-keygen supports two types of certificates: user and host. User cer?

 tificates authenticate users to servers, whereas host certificates au?

 thenticate server hosts to users. To generate a user certificate:

 $ ssh-keygen -s /path/to/ca_key -I key_id /path/to/user_key.pub

 The resultant certificate will be placed in /path/to/user_key-cert.pub.

 A host certificate requires the -h option:

 $ ssh-keygen -s /path/to/ca_key -I key_id -h /path/to/host_key.pub

 The host certificate will be output to /path/to/host_key-cert.pub. Page 14/21

 It is possible to sign using a CA key stored in a PKCS#11 token by pro?

 viding the token library using -D and identifying the CA key by providing

 its public half as an argument to -s:

 $ ssh-keygen -s ca_key.pub -D libpkcs11.so -I key_id user_key.pub

 Similarly, it is possible for the CA key to be hosted in a ssh-agent(1).

 This is indicated by the -U flag and, again, the CA key must be identi?

 fied by its public half.

 $ ssh-keygen -Us ca_key.pub -I key_id user_key.pub

 In all cases, key_id is a "key identifier" that is logged by the server

 when the certificate is used for authentication.

 Certificates may be limited to be valid for a set of principal

 (user/host) names. By default, generated certificates are valid for all

 users or hosts. To generate a certificate for a specified set of princi?

 pals:

 $ ssh-keygen -s ca_key -I key_id -n user1,user2 user_key.pub

 $ ssh-keygen -s ca_key -I key_id -h -n host.domain host_key.pub

 Additional limitations on the validity and use of user certificates may

 be specified through certificate options. A certificate option may dis?

 able features of the SSH session, may be valid only when presented from

 particular source addresses or may force the use of a specific command.

 The options that are valid for user certificates are:

 clear Clear all enabled permissions. This is useful for clearing the

 default set of permissions so permissions may be added individu?

 ally.

 critical:name[=contents]

 extension:name[=contents]

 Includes an arbitrary certificate critical option or extension.

 The specified name should include a domain suffix, e.g.

 ?name@example.com?. If contents is specified then it is included

 as the contents of the extension/option encoded as a string, oth?

 erwise the extension/option is created with no contents (usually

 indicating a flag). Extensions may be ignored by a client or

 server that does not recognise them, whereas unknown critical op? Page 15/21

 tions will cause the certificate to be refused.

 force-command=command

 Forces the execution of command instead of any shell or command

 specified by the user when the certificate is used for authenti?

 cation.

 no-agent-forwarding

 Disable ssh-agent(1) forwarding (permitted by default).

 no-port-forwarding

 Disable port forwarding (permitted by default).

 no-pty Disable PTY allocation (permitted by default).

 no-user-rc

 Disable execution of ~/.ssh/rc by sshd(8) (permitted by default).

 no-x11-forwarding

 Disable X11 forwarding (permitted by default).

 permit-agent-forwarding

 Allows ssh-agent(1) forwarding.

 permit-port-forwarding

 Allows port forwarding.

 permit-pty

 Allows PTY allocation.

 permit-user-rc

 Allows execution of ~/.ssh/rc by sshd(8).

 permit-X11-forwarding

 Allows X11 forwarding.

 no-touch-required

 Do not require signatures made using this key include demonstra?

 tion of user presence (e.g. by having the user touch the authen?

 ticator). This option only makes sense for the FIDO authentica?

 tor algorithms ecdsa-sk and ed25519-sk.

 source-address=address_list

 Restrict the source addresses from which the certificate is con?

 sidered valid. The address_list is a comma-separated list of one

 or more address/netmask pairs in CIDR format. Page 16/21

 verify-required

 Require signatures made using this key indicate that the user was

 first verified. This option only makes sense for the FIDO au?

 thenticator algorithms ecdsa-sk and ed25519-sk. Currently PIN

 authentication is the only supported verification method, but

 other methods may be supported in the future.

 At present, no standard options are valid for host keys.

 Finally, certificates may be defined with a validity lifetime. The -V

 option allows specification of certificate start and end times. A cer?

 tificate that is presented at a time outside this range will not be con?

 sidered valid. By default, certificates are valid from the UNIX Epoch to

 the distant future.

 For certificates to be used for user or host authentication, the CA pub?

 lic key must be trusted by sshd(8) or ssh(1). Please refer to those man?

 ual pages for details.

KEY REVOCATION LISTS

 ssh-keygen is able to manage OpenSSH format Key Revocation Lists (KRLs).

 These binary files specify keys or certificates to be revoked using a

 compact format, taking as little as one bit per certificate if they are

 being revoked by serial number.

 KRLs may be generated using the -k flag. This option reads one or more

 files from the command line and generates a new KRL. The files may ei?

 ther contain a KRL specification (see below) or public keys, listed one

 per line. Plain public keys are revoked by listing their hash or con?

 tents in the KRL and certificates revoked by serial number or key ID (if

 the serial is zero or not available).

 Revoking keys using a KRL specification offers explicit control over the

 types of record used to revoke keys and may be used to directly revoke

 certificates by serial number or key ID without having the complete orig?

 inal certificate on hand. A KRL specification consists of lines contain?

 ing one of the following directives followed by a colon and some direc?

 tive-specific information.

 serial: serial_number[-serial_number] Page 17/21

 Revokes a certificate with the specified serial number. Serial

 numbers are 64-bit values, not including zero and may be ex?

 pressed in decimal, hex or octal. If two serial numbers are

 specified separated by a hyphen, then the range of serial numbers

 including and between each is revoked. The CA key must have been

 specified on the ssh-keygen command line using the -s option.

 id: key_id

 Revokes a certificate with the specified key ID string. The CA

 key must have been specified on the ssh-keygen command line using

 the -s option.

 key: public_key

 Revokes the specified key. If a certificate is listed, then it

 is revoked as a plain public key.

 sha1: public_key

 Revokes the specified key by including its SHA1 hash in the KRL.

 sha256: public_key

 Revokes the specified key by including its SHA256 hash in the

 KRL. KRLs that revoke keys by SHA256 hash are not supported by

 OpenSSH versions prior to 7.9.

 hash: fingerprint

 Revokes a key using a fingerprint hash, as obtained from a

 sshd(8) authentication log message or the ssh-keygen -l flag.

 Only SHA256 fingerprints are supported here and resultant KRLs

 are not supported by OpenSSH versions prior to 7.9.

 KRLs may be updated using the -u flag in addition to -k. When this op?

 tion is specified, keys listed via the command line are merged into the

 KRL, adding to those already there.

 It is also possible, given a KRL, to test whether it revokes a particular

 key (or keys). The -Q flag will query an existing KRL, testing each key

 specified on the command line. If any key listed on the command line has

 been revoked (or an error encountered) then ssh-keygen will exit with a

 non-zero exit status. A zero exit status will only be returned if no key

 was revoked. Page 18/21

ALLOWED SIGNERS

 When verifying signatures, ssh-keygen uses a simple list of identities

 and keys to determine whether a signature comes from an authorized

 source. This "allowed signers" file uses a format patterned after the

 AUTHORIZED_KEYS FILE FORMAT described in sshd(8). Each line of the file

 contains the following space-separated fields: principals, options, key?

 type, base64-encoded key. Empty lines and lines starting with a ?#? are

 ignored as comments.

 The principals field is a pattern-list (see PATTERNS in ssh_config(5))

 consisting of one or more comma-separated USER@DOMAIN identity patterns

 that are accepted for signing. When verifying, the identity presented

 via the -I option must match a principals pattern in order for the corre?

 sponding key to be considered acceptable for verification.

 The options (if present) consist of comma-separated option specifica?

 tions. No spaces are permitted, except within double quotes. The fol?

 lowing option specifications are supported (note that option keywords are

 case-insensitive):

 cert-authority

 Indicates that this key is accepted as a certificate authority

 (CA) and that certificates signed by this CA may be accepted for

 verification.

 namespaces=namespace-list

 Specifies a pattern-list of namespaces that are accepted for this

 key. If this option is present, the signature namespace embedded

 in the signature object and presented on the verification com?

 mand-line must match the specified list before the key will be

 considered acceptable.

 valid-after=timestamp

 Indicates that the key is valid for use at or after the specified

 timestamp, which may be a date in YYYYMMDD format or a time in

 YYYYMMDDHHMM[SS] format.

 valid-before=timestamp

 Indicates that the key is valid for use at or before the speci? Page 19/21

 fied timestamp.

 When verifying signatures made by certificates, the expected principal

 name must match both the principals pattern in the allowed signers file

 and the principals embedded in the certificate itself.

 An example allowed signers file:

 # Comments allowed at start of line

 user1@example.com,user2@example.com ssh-rsa AAAAX1...

 # A certificate authority, trusted for all principals in a domain.

 *@example.com cert-authority ssh-ed25519 AAAB4...

 # A key that is accepted only for file signing.

 user2@example.com namespaces="file" ssh-ed25519 AAA41...

ENVIRONMENT

 SSH_SK_PROVIDER

 Specifies a path to a library that will be used when loading any

 FIDO authenticator-hosted keys, overriding the default of using

 the built-in USB HID support.

FILES

 ~/.ssh/id_dsa

 ~/.ssh/id_ecdsa

 ~/.ssh/id_ecdsa_sk

 ~/.ssh/id_ed25519

 ~/.ssh/id_ed25519_sk

 ~/.ssh/id_rsa

 Contains the DSA, ECDSA, authenticator-hosted ECDSA, Ed25519, au?

 thenticator-hosted Ed25519 or RSA authentication identity of the

 user. This file should not be readable by anyone but the user.

 It is possible to specify a passphrase when generating the key;

 that passphrase will be used to encrypt the private part of this

 file using 128-bit AES. This file is not automatically accessed

 by ssh-keygen but it is offered as the default file for the pri?

 vate key. ssh(1) will read this file when a login attempt is

 made.

 ~/.ssh/id_dsa.pub Page 20/21

 ~/.ssh/id_ecdsa.pub

 ~/.ssh/id_ecdsa_sk.pub

 ~/.ssh/id_ed25519.pub

 ~/.ssh/id_ed25519_sk.pub

 ~/.ssh/id_rsa.pub

 Contains the DSA, ECDSA, authenticator-hosted ECDSA, Ed25519, au?

 thenticator-hosted Ed25519 or RSA public key for authentication.

 The contents of this file should be added to

 ~/.ssh/authorized_keys on all machines where the user wishes to

 log in using public key authentication. There is no need to keep

 the contents of this file secret.

 /etc/ssh/moduli

 Contains Diffie-Hellman groups used for DH-GEX. The file format

 is described in moduli(5).

SEE ALSO

 ssh(1), ssh-add(1), ssh-agent(1), moduli(5), sshd(8)

 The Secure Shell (SSH) Public Key File Format, RFC 4716, 2006.

AUTHORS

 OpenSSH is a derivative of the original and free ssh 1.2.12 release by

 Tatu Ylonen. Aaron Campbell, Bob Beck, Markus Friedl, Niels Provos, Theo

 de Raadt and Dug Song removed many bugs, re-added newer features and cre?

 ated OpenSSH. Markus Friedl contributed the support for SSH protocol

 versions 1.5 and 2.0.

BSD August 11, 2021 BSD

Page 21/21

