
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'ssh-copy-id.1' command

$ man ssh-copy-id.1

SSH-COPY-ID(1)            BSD General Commands Manual           SSH-COPY-ID(1)

NAME

     ssh-copy-id ? use locally available keys to authorise logins on a remote

     machine

SYNOPSIS

     ssh-copy-id [-f] [-n] [-s] [-i [identity_file]] [-p port] [-o ssh_option]

                 [user@]hostname

     ssh-copy-id -h | -?

DESCRIPTION

     ssh-copy-id is a script that uses ssh(1) to log into a remote machine

     (presumably using a login password, so password authentication should be

     enabled, unless you've done some clever use of multiple identities).  It

     assembles a list of one or more fingerprints (as described below) and

     tries to log in with each key, to see if any of them are already in?

     stalled (of course, if you are not using ssh-agent(1) this may result in

     you being repeatedly prompted for pass-phrases).  It then assembles a

     list of those that failed to log in, and using ssh, enables logins with

     those keys on the remote server.  By default it adds the keys by append?

     ing them to the remote user's ~/.ssh/authorized_keys (creating the file,

     and directory, if necessary).  It is also capable of detecting if the re?

     mote system is a NetScreen, and using its ?set ssh pka-dsa key ...? com?

     mand instead.

     The options are as follows: Page 1/4



     -i identity_file

             Use only the key(s) contained in identity_file (rather than look?

             ing for identities via ssh-add(1) or in the default_ID_file).  If

             the filename does not end in .pub this is added.  If the filename

             is omitted, the default_ID_file is used.

             Note that this can be used to ensure that the keys copied have

             the comment one prefers and/or extra options applied, by ensuring

             that the key file has these set as preferred before the copy is

             attempted.

     -f      Forced mode: doesn't check if the keys are present on the remote

             server.  This means that it does not need the private key.  Of

             course, this can result in more than one copy of the key being

             installed on the remote system.

     -n      do a dry-run.  Instead of installing keys on the remote system

             simply prints the key(s) that would have been installed.

     -s      SFTP mode: usually the public keys are installed by executing

             commands on the remote side.  With this option the user's

             ~/.ssh/authorized_keys file will be downloaded, modified locally

             and uploaded with sftp.  This option is useful if the server has

             restrictions on commands which can be used on the remote side.

     -h, -?  Print Usage summary

     -p port, -o ssh_option

             These two options are simply passed through untouched, along with

             their argument, to allow one to set the port or other ssh(1) op?

             tions, respectively.

             Rather than specifying these as command line options, it is often

             better to use (per-host) settings in ssh(1)'s configuration file:

             ssh_config(5).

     Default behaviour without -i, is to check if ?ssh-add -L? provides any

     output, and if so those keys are used.  Note that this results in the

     comment on the key being the filename that was given to ssh-add(1) when

     the key was loaded into your ssh-agent(1) rather than the comment con?

     tained in that file, which is a bit of a shame.  Otherwise, if ssh-add(1) Page 2/4



     provides no keys contents of the default_ID_file will be used.

     The default_ID_file is the most recent file that matches: ~/.ssh/id*.pub,

     (excluding those that match ~/.ssh/*-cert.pub) so if you create a key

     that is not the one you want ssh-copy-id to use, just use touch(1) on

     your preferred key's .pub file to reinstate it as the most recent.

EXAMPLES

     If you have already installed keys from one system on a lot of remote

     hosts, and you then create a new key, on a new client machine, say, it

     can be difficult to keep track of which systems on which you've installed

     the new key.  One way of dealing with this is to load both the new key

     and old key(s) into your ssh-agent(1).  Load the new key first, without

     the -c option, then load one or more old keys into the agent, possibly by

     ssh-ing to the client machine that has that old key, using the -A option

     to allow agent forwarding:

           user@newclient$ ssh-add

           user@newclient$ ssh -A old.client

           user@oldl$ ssh-add -c

           ... prompt for pass-phrase ...

           user@old$ logoff

           user@newclient$ ssh someserver

     now, if the new key is installed on the server, you'll be allowed in un?

     prompted, whereas if you only have the old key(s) enabled, you'll be

     asked for confirmation, which is your cue to log back out and run

           user@newclient$ ssh-copy-id -i someserver

     The reason you might want to specify the -i option in this case is to en?

     sure that the comment on the installed key is the one from the .pub file,

     rather than just the filename that was loaded into your agent.  It also

     ensures that only the id you intended is installed, rather than all the

     keys that you have in your ssh-agent(1).  Of course, you can specify an?

     other id, or use the contents of the ssh-agent(1) as you prefer.

     Having mentioned ssh-add(1)'s -c option, you might consider using this

     whenever using agent forwarding to avoid your key being hijacked, but it

     is much better to instead use ssh(1)'s ProxyCommand and -W option, to Page 3/4



     bounce through remote servers while always doing direct end-to-end au?

     thentication. This way the middle hop(s) don't get access to your

     ssh-agent(1).  A web search for ?ssh proxycommand nc? should prove en?

     lightening (N.B. the modern approach is to use the -W option, rather than

     nc(1)).

SEE ALSO

     ssh(1), ssh-agent(1), sshd(8)

BSD                              June 17, 2010                             BSD

Page 4/4


