
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'snap-confine.8' command

$ man snap-confine.8

SNAP-CONFINE(8)                     snappy                     SNAP-CONFINE(8)

NAME

       snap-confine - internal tool for confining snappy applications

SYNOPSIS

          snap-confine  [--classic] [--base BASE] SECURITY_TAG COMMAND [...AR?

          GUMENTS]

DESCRIPTION

       The snap-confine is a program used internally by snapd to construct the

       execution environment for snap applications.

OPTIONS

       The snap-confine program accepts two options:

          --classic  requests  the  so-called _classic_ _confinement_ in which

          applications are not confined at all (like in classic systems, hence

          the  name).  This  disables  the  use of a dedicated, per-snap mount

          namespace. The snapd service generates permissive apparmor and  sec?

          comp profiles that allow everything.

          --base  BASE  directs snap-confine to use the given base snap as the

          root filesystem. If omitted it defaults to the core  snap.  This  is

          derived  from  snap meta-data by snapd when starting the application

          process.

FEATURES

   Apparmor profiles

       snap-confine switches to the apparmor profile $SECURITY_TAG.  The  pro? Page 1/4



       file is mandatory and snap-confine will refuse to run without it.

       The  profile  has to be loaded into the kernel prior to using snap-con?

       fine.  Typically this is arranged for by snapd.  The  profile  contains

       rich description of what the application process is allowed to do, this

       includes system calls, file paths, access patterns, linux capabilities,

       etc.  The  apparmor profile can also do extensive dbus mediation. Refer

       to apparmor documentation for more details.

   Seccomp profiles

       snap-confine looks for the /var/lib/snapd/seccomp/bpf/$SECURITY_TAG.bin

       file.  This file is mandatory and snap-confine will refuse to run with?

       out it. This file contains the  seccomp  bpf  binary  program  that  is

       loaded into the kernel by snap-confine.

       The  file  is  generated  with the /usr/lib/snapd/snap-seccomp compiler

       from the $SECURITY_TAG.src file that uses  a  custom  syntax  that  de?

       scribes the set of allowed system calls and optionally their arguments.

       The profile is then used to confine the started application.

       As a security precaution disallowed system calls cause the started  ap?

       plication executable to be killed by the kernel. In the future this re?

       striction may be lifted to return EPERM instead.

   Mount profiles

       snap-confine uses a helper process, snap-update-ns, to apply the  mount

       namespace  profile  to  freshly  constructed mount namespace. That tool

       looks  for  the  /var/lib/snapd/mount/snap.$SNAP_NAME.fstab  file.   If

       present  it  is read, parsed and treated like a mostly-typical fstab(5)

       file.  The mount directives listed there are executed in order. All di?

       rectives must succeed as any failure will abort execution.

       By  default all mount entries start with the following flags: bind, ro,

       nodev, nosuid.  Some of those flags can be reversed by  an  appropriate

       option (e.g. rw can cause the mount point to be writable).

       Certain additional features are enabled and conveyed through the use of

       mount options prefixed with x-snapd-.

       As a security precaution only bind mounts are supported at this time.

   Sharing of the mount namespace Page 2/4



       As of version 1.0.41 all the applications from the same snap will share

       the same mount namespace. Applications from different snaps continue to

       use separate mount namespaces.

ENVIRONMENT

       snap-confine responds to the following environment variables

       SNAP_CONFINE_DEBUG:

              When defined the program will print additional diagnostic infor?

              mation about the actions being performed. All the output goes to

              stderr.

       The following variables are only used when snap-confine is  not  setuid

       root.  This is only applicable when testing the program itself.

       SNAPPY_LAUNCHER_INSIDE_TESTS:

              Internal variable that should not be relied upon.

       SNAPPY_LAUNCHER_SECCOMP_PROFILE_DIR:

              Internal variable that should not be relied upon.

       SNAP_USER_DATA:

              Full     path     to     the    directory    like    /home/$LOG?

              NAME/snap/$SNAP_NAME/$SNAP_REVISION.

              This directory is created by snap-confine on startup. This is  a

              temporary feature that will be merged into snapd's snap-run com?

              mand. The set of directories that can  be  created  is  confined

              with apparmor.

FILES

       snap-confine and snap-update-ns use the following files:

       /var/lib/snapd/mount/snap.*.fstab:

          Description of the mount profile.

       /var/lib/snapd/seccomp/bpf/*.src:

          Input for the /usr/lib/snapd/snap-seccomp profile compiler.

       /var/lib/snapd/seccomp/bpf/*.bin:

          Compiled seccomp bpf profile programs.

       /run/snapd/ns/:

          Directory used to keep shared mount namespaces.

          snap-confine  internally  converts  this directory to a private bind Page 3/4



          mount.  Semantically the behavior  is  identical  to  the  following

          mount commands:

          mount   --bind   /run/snapd/ns  /run/snapd/ns  mount  --make-private

          /run/snapd/ns

       /run/snapd/ns/.lock:

          A  flock(2)-based  lock  file  acquired  to   create   and   convert

          /run/snapd/ns/ to a private bind mount.

       /run/snapd/ns/$SNAP_NAME.lock:

          A  flock(2)-based  lock  file  acquired  to create or join the mount

          namespace represented as /run/snaps/ns/$SNAP_NAME.mnt.

       /run/snapd/ns/$SNAP_NAME.mnt:

          This file can be either:

          ? An empty file that may be seen before the mount namespace is  pre?

            served or when the mount namespace is unmounted.

          ? A  file  belonging  to  the nsfs file system, representing a fully

            populated mount namespace of  a  given  snap.  The  file  is  bind

            mounted from /proc/self/ns/mnt from the first process in any snap.

       /proc/self/mountinfo:

          This  file  is  read to decide if /run/snapd/ns/ needs to be created

          and converted to a private bind mount, as described above.

       Note that the apparmor profile  is  external  to  snap-confine  and  is

       loaded directly into the kernel. The actual apparmor profile is managed

       by snapd.

BUGS

       Please report all bugs with https://bugs.launchpad.net/snapd/+filebug

AUTHOR

       zygmunt.krynicki@canonical.com

COPYRIGHT

       Canonical Ltd.

2.28                              2017-09-18                   SNAP-CONFINE(8)

Page 4/4


