
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'smartd.8' command

$ man smartd.8

SMARTD(8) SMART Monitoring Tools SMARTD(8)

NAME

 smartd - SMART Disk Monitoring Daemon

SYNOPSIS

 smartd [options]

DESCRIPTION

 [This man page is generated for the Linux version of smartmontools. It

 does not contain info specific to other platforms.]

 smartd is a daemon that monitors the Self-Monitoring, Analysis and Re?

 porting Technology (SMART) system built into most ATA/SATA and SCSI/SAS

 hard drives and solid-state drives. The purpose of SMART is to monitor

 the reliability of the hard drive and predict drive failures, and to

 carry out different types of drive self-tests. This version of smartd

 is compatible with ACS-3, ACS-2, ATA8-ACS, ATA/ATAPI-7 and earlier

 standards (see REFERENCES below).

 smartd will attempt to enable SMART monitoring on ATA devices (equiva?

 lent to smartctl -s on) and polls these and SCSI devices every 30 min?

 utes (configurable), logging SMART errors and changes of SMART At?

 tributes via the SYSLOG interface. The default location for these SYS?

 LOG notifications and warnings is system-dependent (typically

 /var/log/messages or /var/log/syslog). To change this default loca?

 tion, please see the '-l' command-line option described below.

 In addition to logging to a file, smartd can also be configured to send Page 1/12

 email warnings if problems are detected. Depending upon the type of

 problem, you may want to run self-tests on the disk, back up the disk,

 replace the disk, or use a manufacturer's utility to force reallocation

 of bad or unreadable disk sectors. If disk problems are detected,

 please see the smartctl manual page and the smartmontools web page/FAQ

 for further guidance.

 If you send a USR1 signal to smartd it will immediately check the sta?

 tus of the disks, and then return to polling the disks every 30 min?

 utes. See the '-i' option below for additional details.

 smartd can be configured at start-up using the configuration file

 /etc/smartmontools/smartd.conf (Windows: EXEDIR/smartd.conf). If the

 configuration file is subsequently modified, smartd can be told to re-

 read the configuration file by sending it a HUP signal, for example

 with the command:

 killall -HUP smartd.

 On startup, if smartd finds a syntax error in the configuration file,

 it will print an error message and then exit. However if smartd is al?

 ready running, then is told with a HUP signal to re-read the configura?

 tion file, and then find a syntax error in this file, it will print an

 error message and then continue, ignoring the contents of the (faulty)

 configuration file, as if the HUP signal had never been received.

 When smartd is running in debug mode, the INT signal (normally gener?

 ated from a shell with CONTROL-C) is treated in the same way as a HUP

 signal: it makes smartd reload its configuration file. To exit smartd

 use CONTROL-\.

 [Linux only] [NEW EXPERMIMENTAL SMARTD FEATURE] If smartd is started as

 a systemd(1) service and 'Type=Notify' is specified in the service

 file, the service manager is notified after successful startup. Other

 state changes are reported via systemd notify STATUS messages. Notifi?

 cation of successful reloads (after HUP signal) is not supported. To

 detect this process start-up type, smartd checks whether the environ?

 ment variable 'NOTIFY_SOCKET' is set. Note that it is required to set

 the '-n' ('--nofork') option in the 'ExecStart=/usr/sbin/smartd' com? Page 2/12

 mand line if 'Type=Notify' is used.

 On startup, in the absence of the configuration file /etc/smartmon?

 tools/smartd.conf, the smartd daemon first scans for all devices that

 support SMART. The scanning is done as follows:

 LINUX: Examine all entries "/dev/hd[a-t]" for IDE/ATA devices, and

 "/dev/sd[a-z]", "/dev/sd[a-c][a-z]" for ATA/SATA or SCSI/SAS

 devices. Disks behind RAID controllers are not included.

 If directive '-d nvme' or no '-d' directive is specified, ex?

 amine all entries "/dev/nvme[0-99]" for NVMe devices.

 smartd then monitors for all possible SMART errors (corresponding to

 the '-a' Directive in the configuration file; see the smartd.conf(5)

 man page).

OPTIONS

 -A PREFIX, --attributelog=PREFIX

 Writes smartd attribute information (normalized and raw attri?

 bute values) to files 'PREFIX''MODEL-SERIAL.ata.csv' or 'PRE?

 FIX''VENDOR-MODEL-SERIAL.scsi.csv'. At each check cycle at?

 tributes are logged as a line of semicolon separated triplets of

 the form "attribute-ID;attribute-norm-value;attribute-raw-

 value;". For SCSI devices error counters and temperature

 recorded in the form "counter-name;counter-value;". Each line

 is led by a date string of the form "yyyy-mm-dd HH:MM:SS" (in

 UTC).

 MODEL and SERIAL are build from drive identify information, in?

 valid characters are replaced by underline.

 If the PREFIX has the form '/path/dir/' (e.g.

 '/var/lib/smartd/'), then files 'MODEL-SERIAL.ata.csv' are cre?

 ated in directory '/path/dir'. If the PREFIX has the form

 '/path/name' (e.g. '/var/lib/misc/attrlog-'), then files 'nameM?

 ODEL-SERIAL.ata.csv' are created in directory '/path/'. The

 path must be absolute, except if debug mode is enabled.

 -B [+]FILE, --drivedb=[+]FILE

 [ATA only] Read the drive database from FILE. The new database Page 3/12

 replaces the built in database by default. If '+' is specified,

 then the new entries prepend the built in entries. Please see

 the smartctl(8) man page for further details.

 -c FILE, --configfile=FILE

 Read smartd configuration Directives from FILE, instead of from

 the default location /etc/smartmontools/smartd.conf (Windows:

 EXEDIR/smartd.conf). If FILE does not exist, then smartd will

 print an error message and exit with nonzero status. Thus, '-c

 /etc/smartmontools/smartd.conf' can be used to verify the exis?

 tence of the default configuration file.

 By using '-' for FILE, the configuration is read from standard

 input. This is useful for commands like:

 echo /dev/sdb -m user@home -M test | smartd -c - -q onecheck

 to perform quick and simple checks without a configuration file.

 -C, --capabilities

 [Linux only] Use libcap-ng to drop unneeded Linux process capa?

 bilities(7). The following capabilities are kept: CAP_SYS_AD?

 MIN, CAP_SYS_RAWIO, CAP_MKNOD.

 Warning: Mail notification does not work when used.

 -d, --debug

 Runs smartd in "debug" mode. In this mode, it displays status

 information to STDOUT rather than logging it to SYSLOG and does

 not fork(2) into the background and detach from the controlling

 terminal. In this mode, smartd also prints more verbose infor?

 mation about what it is doing than when operating in "daemon"

 mode. In this mode, the INT signal (normally generated from a

 terminal with CONTROL-C) makes smartd reload its configuration

 file. Please use CONTROL-\ to exit

 -D, --showdirectives

 Prints a list (to STDOUT) of all the possible Directives which

 may appear in the configuration file /etc/smartmon?

 tools/smartd.conf, and then exits. These Directives are de?

 scribed in the smartd.conf(5) man page. They may appear in the Page 4/12

 configuration file following the device name.

 -h, --help, --usage

 Prints usage message to STDOUT and exits.

 -i N, --interval=N

 Sets the interval between disk checks to N seconds, where N is a

 decimal integer. The minimum allowed value is ten and the maxi?

 mum is the largest positive integer that can be represented on

 your system (often 2^31-1). The default is 1800 seconds.

 Note that the superuser can make smartd check the status of the

 disks at any time by sending it the SIGUSR1 signal, for example

 with the command:

 kill -SIGUSR1 <pid>

 where <pid> is the process id number of smartd. One may also

 use:

 killall -USR1 smartd

 for the same purpose.

 -l FACILITY, --logfacility=FACILITY

 Uses syslog facility FACILITY to log the messages from smartd.

 Here FACILITY is one of local0, local1, ..., local7, or daemon

 [default]. If this command-line option is not used, then by de?

 fault messages from smartd are logged to the facility daemon.

 If you would like to have smartd messages logged somewhere other

 than the default location, include (for example) '-l local3' in

 its start up argument list. Tell the syslog daemon to log all

 messages from facility local3 to (for example)

 '/var/log/smartd.log'.

 For more detailed information, please refer to the man pages for

 the local syslog daemon, typically syslogd(8), syslog-ng(8) or

 rsyslogd(8).

 -n, --no-fork

 Do not fork into background; this is useful when executed from

 modern init methods like initng, minit, supervise or systemd.

 -p NAME, --pidfile=NAME Page 5/12

 Writes pidfile NAME containing the smartd Process ID number

 (PID). To avoid symlink attacks make sure the directory to

 which pidfile is written is only writable for root. Without

 this option, or if the --debug option is given, no PID file is

 written on startup. If smartd is killed with a maskable signal

 then the pidfile is removed.

 -q WHEN, --quit=WHEN

 Specifies when, if ever, smartd should exit. The valid argu?

 ments are to this option are:

 nodev - Exit if there are no devices to monitor, or if any er?

 rors are found at startup in the configuration file. This is

 the default.

 errors - Exit if there are no devices to monitor, or if any er?

 rors are found in the configuration file /etc/smartmon?

 tools/smartd.conf at startup or whenever it is reloaded.

 nodevstartup - Exit if there are no devices to monitor at

 startup. But continue to run if no devices are found whenever

 the configuration file is reloaded.

 never - Only exit if a fatal error occurs (no remaining system

 memory, invalid command line arguments). In this mode, even if

 there are no devices to monitor, or if the configuration file

 /etc/smartmontools/smartd.conf has errors, smartd will continue

 to run, waiting to load a configuration file listing valid de?

 vices.

 onecheck - Start smartd in debug mode, then register devices,

 then check device's SMART status once, and then exit with zero

 exit status if all of these steps worked correctly.

 This last option is intended for 'distribution-writers' who want

 to create automated scripts to determine whether or not to auto?

 matically start up smartd after installing smartmontools. After

 starting smartd with this command-line option, the distribu?

 tion's install scripts should wait a reasonable length of time

 (say ten seconds). If smartd has not exited with zero status by Page 6/12

 that time, the script should send smartd a SIGTERM or SIGKILL

 and assume that smartd will not operate correctly on the host.

 Conversely, if smartd exits with zero status, then it is safe to

 run smartd in normal daemon mode. If smartd is unable to moni?

 tor any devices or encounters other problems then it will return

 with non-zero exit status.

 showtests - Start smartd in debug mode, then register devices,

 then write a list of future scheduled self tests to stdout, and

 then exit with zero exit status if all of these steps worked

 correctly. Device's SMART status is not checked.

 This option is intended to test whether the '-s REGEX' direc?

 tives in smartd.conf will have the desired effect. The output

 lists the next test schedules, limited to 5 tests per type and

 device. This is followed by a summary of all tests of each de?

 vice within the next 90 days.

 -r TYPE, --report=TYPE

 Intended primarily to help smartmontools developers understand

 the behavior of smartmontools on non-conforming or poorly-con?

 forming hardware. This option reports details of smartd trans?

 actions with the device. The option can be used multiple times.

 When used just once, it shows a record of the ioctl() transac?

 tions with the device. When used more than once, the detail of

 these ioctl() transactions are reported in greater detail. The

 valid arguments to this option are:

 ioctl - report all ioctl() transactions.

 ataioctl - report only ioctl() transactions with ATA devices.

 scsiioctl - report only ioctl() transactions with SCSI devices.

 nvmeioctl - report only ioctl() transactions with NVMe devices.

 Any argument may include a positive integer to specify the level

 of detail that should be reported. The argument should be fol?

 lowed by a comma then the integer with no spaces. For example,

 ataioctl,2 The default level is 1, so '-r ataioctl,1' and '-r

 ataioctl' are equivalent. Page 7/12

 -s PREFIX, --savestates=PREFIX

 Reads/writes smartd state information from/to files 'PRE?

 FIX''MODEL-SERIAL.ata.state' or 'PREFIX''VENDOR-MODEL-SE?

 RIAL.scsi.state'. This preserves SMART attributes, drive min

 and max temperatures (-W directive), info about last sent warn?

 ing email (-m directive), and the time of next check of the

 self-test REGEXP (-s directive) across boot cycles.

 MODEL and SERIAL are build from drive identify information, in?

 valid characters are replaced by underline.

 If the PREFIX has the form '/path/dir/' (e.g.

 '/var/lib/smartd/'), then files 'MODEL-SERIAL.ata.state' are

 created in directory '/path/dir'. If the PREFIX has the form

 '/path/name' (e.g. '/var/lib/misc/smartd-'), then files 'nameMO?

 DEL-SERIAL.ata.state' are created in directory '/path/'. The

 path must be absolute, except if debug mode is enabled.

 The state information files are read on smartd startup. The

 files are always (re)written after reading the configuration

 file, before rereading the configuration file (SIGHUP), before

 smartd shutdown, and after a check forced by SIGUSR1. After a

 normal check cycle, a file is only rewritten if an important

 change (which usually results in a SYSLOG output) occurred.

 -w PATH, --warnexec=PATH

 Run the executable PATH instead of the default script when

 smartd needs to send warning messages. PATH must point to an

 executable binary file or script. The default script is

 /etc/smartmontools/smartd_warning.sh.

 -V, --version, --license, --copyright

 Prints version, copyright, license, home page and SVN revision

 information for your copy of smartd to STDOUT and then exits.

EXAMPLES

 smartd

 Runs the daemon in forked mode. This is the normal way to run smartd.

 Entries are logged to SYSLOG. Page 8/12

 smartd -d -i 30

 Run in foreground (debug) mode, checking the disk status every 30 sec?

 onds.

 smartd -q onecheck

 Registers devices, and checks the status of the devices exactly once.

 The exit status (the shell $? variable) will be zero if all went well,

 and nonzero if no devices were detected or some other problem was en?

 countered.

CONFIGURATION

 The syntax of the smartd.conf(5) file is discussed separately.

NOTES

 smartd will make log entries at loglevel LOG_INFO if the Normalized

 SMART Attribute values have changed, as reported using the '-t', '-p',

 or '-u' Directives. For example:

 'Device: /dev/sda, SMART Attribute: 194 Temperature_Celsius changed

 from 94 to 93'

 Note that in this message, the value given is the 'Normalized' not the

 'Raw' Attribute value (the disk temperature in this case is about 22

 Celsius). The '-R' and '-r' Directives modify this behavior, so that

 the information is printed with the Raw values as well, for example:

 'Device: /dev/sda, SMART Attribute: 194 Temperature_Celsius changed

 from 94 [Raw 22] to 93 [Raw 23]'

 Here the Raw values are the actual disk temperatures in Celsius. The

 way in which the Raw values are printed, and the names under which the

 Attributes are reported, is governed by the various '-v Num,Descrip?

 tion' Directives described previously.

 Please see the smartctl manual page for further explanation of the dif?

 ferences between Normalized and Raw Attribute values.

 smartd will make log entries at loglevel LOG_CRIT if a SMART Attribute

 has failed, for example:

 'Device: /dev/sdc, Failed SMART Attribute: 5 Reallocated_Sector_Ct'

 This loglevel is used for reporting enabled by the '-H', -f',

 '-l selftest', and '-l error' Directives. Entries reporting failure of Page 9/12

 SMART Prefailure Attributes should not be ignored: they mean that the

 disk is failing. Use the smartctl utility to investigate.

LOG TIMESTAMP TIMEZONE

 When smartd makes log entries, these are time-stamped. The time stamps

 are in the computer's local time zone, which is generally set using ei?

 ther the environment variable 'TZ' or using a time-zone file such as

 /etc/localtime. You may wish to change the timezone while smartd is

 running (for example, if you carry a laptop to a new time-zone and

 don't reboot it). Due to a bug in the tzset(3) function of many unix

 standard C libraries, the time-zone stamps of smartd might not change.

 For some systems, smartd will work around this problem if the time-zone

 is set using /etc/localtime. The work-around fails if the time-zone is

 set using the 'TZ' variable (or a file that it points to).

EXIT STATUS

 The exit status (return value) of smartd can have the following values:

 0: Daemon startup successful, or smartd was killed by a SIGTERM (or

 in debug mode, a SIGQUIT).

 1: Commandline did not parse.

 2: There was a syntax error in the config file.

 3: Forking the daemon failed.

 4: Couldn't create PID file.

 5: Config file does not exist (only returned in conjunction with

 the '-c' option).

 6: Config file exists, but cannot be read.

 8: smartd ran out of memory during startup.

 10: An inconsistency was found in smartd's internal data structures.

 This should never happen. It must be due to either a coding or

 compiler bug. Please report such failures to smartmontools de?

 velopers, see REPORTING BUGS below.

 16: A device explicitly listed in /etc/smartmontools/smartd.conf

 can't be monitored.

 17: smartd didn't find any devices to monitor.

 254: When in daemon mode, smartd received a SIGINT or SIGQUIT. (Note Page 10/12

 that in debug mode, SIGINT has the same effect as SIGHUP, and

 makes smartd reload its configuration file. SIGQUIT has the

 same effect as SIGTERM and causes smartd to exit with zero exit

 status.

 132 and above

 smartd was killed by a signal that is not explicitly listed

 above. The exit status is then 128 plus the signal number. For

 example if smartd is killed by SIGKILL (signal 9) then the exit

 status is 137.

FILES

 /usr/sbin/smartd

 full path of this executable.

 /etc/smartmontools/smartd.conf

 configuration file (see smartd.conf(5) man page).

 /etc/smartmontools/smartd_warning.sh

 script run on warnings (see '-w' option above and '-M exec' di?

 rective on smartd.conf(5) man page).

 /etc/smartmontools/smartd_warning.d/

 plugin directory for smartd warning script (see '-m' directive

 on smartd.conf(5) man page).

 /usr/share/smartmontools/drivedb.h

 drive database (see '-B' option).

 /etc/smartmontools/smart_drivedb.h

 optional local drive database (see '-B' option).

AUTHORS

 Bruce Allen (project initiator),

 Christian Franke (project manager, Windows port and all sort of

 things),

 Douglas Gilbert (SCSI subsystem),

 Volker Kuhlmann (moderator of support and database mailing list),

 Gabriele Pohl (wiki & development team support),

 Alex Samorukov (FreeBSD port and more, new Trac wiki).

 Many other individuals have made contributions and corrections, see AU? Page 11/12

 THORS, ChangeLog and repository files.

 The first smartmontools code was derived from the smartsuite package,

 written by Michael Cornwell and Andre Hedrick.

REPORTING BUGS

 To submit a bug report, create a ticket in smartmontools wiki:

 <https://www.smartmontools.org/>.

 Alternatively send the info to the smartmontools support mailing list:

 <https://listi.jpberlin.de/mailman/listinfo/smartmontools-support>.

SEE ALSO

 smartd.conf(5), smartctl(8).

 update-smart-drivedb(8).

 systemd.exec(5).

REFERENCES

 Please see the following web site for more info: <https://www.smartmon?

 tools.org/>

 An introductory article about smartmontools is Monitoring Hard Disks

 with SMART, by Bruce Allen, Linux Journal, January 2004, pages 74?77.

 See <https://www.linuxjournal.com/article/6983>.

 If you would like to understand better how SMART works, and what it

 does, a good place to start is with Sections 4.8 and 6.54 of the first

 volume of the 'AT Attachment with Packet Interface-7' (ATA/ATAPI-7)

 specification Revision 4b. This documents the SMART functionality

 which the smartmontools utilities provide access to.

 The functioning of SMART was originally defined by the SFF-8035i revi?

 sion 2 and the SFF-8055i revision 1.4 specifications. These are publi?

 cations of the Small Form Factors (SFF) Committee.

 Links to these and other documents may be found on the Links page of

 the smartmontools Wiki at <https://www.smartmontools.org/wiki/Links>.

PACKAGE VERSION

 smartmontools-7.2 2020-12-30 r5155

 $Id: smartd.8.in 4861 2018-12-16 18:24:57Z chrfranke $

smartmontools-7.2 2020-12-30 SMARTD(8)

Page 12/12

