
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'sigstack.3' command

$ man sigstack.3

SIGALTSTACK(2) Linux Programmer's Manual SIGALTSTACK(2)

NAME

 sigaltstack - set and/or get signal stack context

SYNOPSIS

 #include <signal.h>

 int sigaltstack(const stack_t *ss, stack_t *old_ss);

 Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

 sigaltstack():

 _XOPEN_SOURCE >= 500

 || /* Since glibc 2.12: */ _POSIX_C_SOURCE >= 200809L

 || /* Glibc versions <= 2.19: */ _BSD_SOURCE

DESCRIPTION

 sigaltstack() allows a thread to define a new alternate signal stack

 and/or retrieve the state of an existing alternate signal stack. An

 alternate signal stack is used during the execution of a signal handler

 if the establishment of that handler (see sigaction(2)) requested it.

 The normal sequence of events for using an alternate signal stack is

 the following:

 1. Allocate an area of memory to be used for the alternate signal

 stack.

 2. Use sigaltstack() to inform the system of the existence and location

 of the alternate signal stack.

 3. When establishing a signal handler using sigaction(2), inform the Page 1/7

 system that the signal handler should be executed on the alternate

 signal stack by specifying the SA_ONSTACK flag.

 The ss argument is used to specify a new alternate signal stack, while

 the old_ss argument is used to retrieve information about the currently

 established signal stack. If we are interested in performing just one

 of these tasks, then the other argument can be specified as NULL.

 The stack_t type used to type the arguments of this function is defined

 as follows:

 typedef struct {

 void *ss_sp; /* Base address of stack */

 int ss_flags; /* Flags */

 size_t ss_size; /* Number of bytes in stack */

 } stack_t;

 To establish a new alternate signal stack, the fields of this structure

 are set as follows:

 ss.ss_flags

 This field contains either 0, or the following flag:

 SS_AUTODISARM (since Linux 4.7)

 Clear the alternate signal stack settings on entry to the

 signal handler. When the signal handler returns, the

 previous alternate signal stack settings are restored.

 This flag was added in order make it safe to switch away

 from the signal handler with swapcontext(3). Without

 this flag, a subsequently handled signal will corrupt the

 state of the switched-away signal handler. On kernels

 where this flag is not supported, sigaltstack() fails

 with the error EINVAL when this flag is supplied.

 ss.ss_sp

 This field specifies the starting address of the stack. When a

 signal handler is invoked on the alternate stack, the kernel au?

 tomatically aligns the address given in ss.ss_sp to a suitable

 address boundary for the underlying hardware architecture.

 ss.ss_size Page 2/7

 This field specifies the size of the stack. The constant

 SIGSTKSZ is defined to be large enough to cover the usual size

 requirements for an alternate signal stack, and the constant

 MINSIGSTKSZ defines the minimum size required to execute a sig?

 nal handler.

 To disable an existing stack, specify ss.ss_flags as SS_DISABLE. In

 this case, the kernel ignores any other flags in ss.ss_flags and the

 remaining fields in ss.

 If old_ss is not NULL, then it is used to return information about the

 alternate signal stack which was in effect prior to the call to sigalt?

 stack(). The old_ss.ss_sp and old_ss.ss_size fields return the start?

 ing address and size of that stack. The old_ss.ss_flags may return ei?

 ther of the following values:

 SS_ONSTACK

 The thread is currently executing on the alternate signal stack.

 (Note that it is not possible to change the alternate signal

 stack if the thread is currently executing on it.)

 SS_DISABLE

 The alternate signal stack is currently disabled.

 Alternatively, this value is returned if the thread is currently

 executing on an alternate signal stack that was established us?

 ing the SS_AUTODISARM flag. In this case, it is safe to switch

 away from the signal handler with swapcontext(3). It is also

 possible to set up a different alternative signal stack using a

 further call to sigaltstack().

 SS_AUTODISARM

 The alternate signal stack has been marked to be autodisarmed as

 described above.

 By specifying ss as NULL, and old_ss as a non-NULL value, one can ob?

 tain the current settings for the alternate signal stack without chang?

 ing them.

RETURN VALUE

 sigaltstack() returns 0 on success, or -1 on failure with errno set to Page 3/7

 indicate the error.

ERRORS

 EFAULT Either ss or old_ss is not NULL and points to an area outside of

 the process's address space.

 EINVAL ss is not NULL and the ss_flags field contains an invalid flag.

 ENOMEM The specified size of the new alternate signal stack ss.ss_size

 was less than MINSIGSTKSZ.

 EPERM An attempt was made to change the alternate signal stack while

 it was active (i.e., the thread was already executing on the

 current alternate signal stack).

ATTRIBUTES

 For an explanation of the terms used in this section, see at?

 tributes(7).

 ??

 ?Interface ? Attribute ? Value ?

 ??

 ?sigaltstack() ? Thread safety ? MT-Safe ?

 ??

CONFORMING TO

 POSIX.1-2001, POSIX.1-2008, SUSv2, SVr4.

 The SS_AUTODISARM flag is a Linux extension.

NOTES

 The most common usage of an alternate signal stack is to handle the

 SIGSEGV signal that is generated if the space available for the stan?

 dard stack is exhausted: in this case, a signal handler for SIGSEGV

 cannot be invoked on the standard stack; if we wish to handle it, we

 must use an alternate signal stack.

 Establishing an alternate signal stack is useful if a thread expects

 that it may exhaust its standard stack. This may occur, for example,

 because the stack grows so large that it encounters the upwardly grow?

 ing heap, or it reaches a limit established by a call to setr?

 limit(RLIMIT_STACK, &rlim). If the standard stack is exhausted, the

 kernel sends the thread a SIGSEGV signal. In these circumstances the Page 4/7

 only way to catch this signal is on an alternate signal stack.

 On most hardware architectures supported by Linux, stacks grow down?

 ward. sigaltstack() automatically takes account of the direction of

 stack growth.

 Functions called from a signal handler executing on an alternate signal

 stack will also use the alternate signal stack. (This also applies to

 any handlers invoked for other signals while the thread is executing on

 the alternate signal stack.) Unlike the standard stack, the system

 does not automatically extend the alternate signal stack. Exceeding

 the allocated size of the alternate signal stack will lead to unpre?

 dictable results.

 A successful call to execve(2) removes any existing alternate signal

 stack. A child process created via fork(2) inherits a copy of its par?

 ent's alternate signal stack settings. The same is also true for a

 child process created using clone(2), unless the clone flags include

 CLONE_VM and do not include CLONE_VFORK, in which case any alternate

 signal stack that was established in the parent is disabled in the

 child process.

 sigaltstack() supersedes the older sigstack() call. For backward com?

 patibility, glibc also provides sigstack(). All new applications

 should be written using sigaltstack().

 History

 4.2BSD had a sigstack() system call. It used a slightly different

 struct, and had the major disadvantage that the caller had to know the

 direction of stack growth.

BUGS

 In Linux 2.2 and earlier, the only flag that could be specified in

 ss.sa_flags was SS_DISABLE. In the lead up to the release of the Linux

 2.4 kernel, a change was made to allow sigaltstack() to allow

 ss.ss_flags==SS_ONSTACK with the same meaning as ss.ss_flags==0 (i.e.,

 the inclusion of SS_ONSTACK in ss.ss_flags is a no-op). On other im?

 plementations, and according to POSIX.1, SS_ONSTACK appears only as a

 reported flag in old_ss.ss_flags. On Linux, there is no need ever to Page 5/7

 specify SS_ONSTACK in ss.ss_flags, and indeed doing so should be

 avoided on portability grounds: various other systems give an error if

 SS_ONSTACK is specified in ss.ss_flags.

EXAMPLES

 The following code segment demonstrates the use of sigaltstack() (and

 sigaction(2)) to install an alternate signal stack that is employed by

 a handler for the SIGSEGV signal:

 stack_t ss;

 ss.ss_sp = malloc(SIGSTKSZ);

 if (ss.ss_sp == NULL) {

 perror("malloc");

 exit(EXIT_FAILURE);

 }

 ss.ss_size = SIGSTKSZ;

 ss.ss_flags = 0;

 if (sigaltstack(&ss, NULL) == -1) {

 perror("sigaltstack");

 exit(EXIT_FAILURE);

 }

 sa.sa_flags = SA_ONSTACK;

 sa.sa_handler = handler(); /* Address of a signal handler */

 sigemptyset(&sa.sa_mask);

 if (sigaction(SIGSEGV, &sa, NULL) == -1) {

 perror("sigaction");

 exit(EXIT_FAILURE);

 }

SEE ALSO

 execve(2), setrlimit(2), sigaction(2), siglongjmp(3), sigsetjmp(3),

 signal(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at Page 6/7

 https://www.kernel.org/doc/man-pages/.

Linux 2020-12-21 SIGALTSTACK(2)

Page 7/7

