
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'sigsetjmp.3' command

$ man sigsetjmp.3

SETJMP(3) Linux Programmer's Manual SETJMP(3)

NAME

 setjmp, sigsetjmp, longjmp, siglongjmp - performing a nonlocal goto

SYNOPSIS

 #include <setjmp.h>

 int setjmp(jmp_buf env);

 int sigsetjmp(sigjmp_buf env, int savesigs);

 void longjmp(jmp_buf env, int val);

 void siglongjmp(sigjmp_buf env, int val);

 Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

 setjmp(): see NOTES.

 sigsetjmp(): _POSIX_C_SOURCE

DESCRIPTION

 The functions described on this page are used for performing "nonlocal

 gotos": transferring execution from one function to a predetermined lo?

 cation in another function. The setjmp() function dynamically estab?

 lishes the target to which control will later be transferred, and

 longjmp() performs the transfer of execution.

 The setjmp() function saves various information about the calling envi?

 ronment (typically, the stack pointer, the instruction pointer, possi?

 bly the values of other registers and the signal mask) in the buffer

 env for later use by longjmp(). In this case, setjmp() returns 0.

 The longjmp() function uses the information saved in env to transfer Page 1/5

 control back to the point where setjmp() was called and to restore

 ("rewind") the stack to its state at the time of the setjmp() call. In

 addition, and depending on the implementation (see NOTES), the values

 of some other registers and the process signal mask may be restored to

 their state at the time of the setjmp() call.

 Following a successful longjmp(), execution continues as if setjmp()

 had returned for a second time. This "fake" return can be distin?

 guished from a true setjmp() call because the "fake" return returns the

 value provided in val. If the programmer mistakenly passes the value 0

 in val, the "fake" return will instead return 1.

 sigsetjmp() and siglongjmp()

 sigsetjmp() and siglongjmp() also perform nonlocal gotos, but provide

 predictable handling of the process signal mask.

 If, and only if, the savesigs argument provided to sigsetjmp() is non?

 zero, the process's current signal mask is saved in env and will be re?

 stored if a siglongjmp() is later performed with this env.

RETURN VALUE

 setjmp() and sigsetjmp() return 0 when called directly; on the "fake"

 return that occurs after longjmp() or siglongjmp(), the nonzero value

 specified in val is returned.

 The longjmp() or siglongjmp() functions do not return.

ATTRIBUTES

 For an explanation of the terms used in this section, see at?

 tributes(7).

 ??

 ?Interface ? Attribute ? Value ?

 ??

 ?setjmp(), sigsetjmp() ? Thread safety ? MT-Safe ?

 ??

 ?longjmp(), siglongjmp() ? Thread safety ? MT-Safe ?

 ??

CONFORMING TO

 setjmp(), longjmp(): POSIX.1-2001, POSIX.1-2008, C89, C99. Page 2/5

 sigsetjmp(), siglongjmp(): POSIX.1-2001, POSIX.1-2008.

NOTES

 POSIX does not specify whether setjmp() will save the signal mask (to

 be later restored during longjmp()). In System V it will not. In

 4.3BSD it will, and there is a function _setjmp() that will not. The

 behavior under Linux depends on the glibc version and the setting of

 feature test macros. On Linux with glibc versions before 2.19,

 setjmp() follows the System V behavior by default, but the BSD behavior

 is provided if the _BSD_SOURCE feature test macro is explicitly defined

 and none of _POSIX_SOURCE, _POSIX_C_SOURCE, _XOPEN_SOURCE, _GNU_SOURCE,

 or _SVID_SOURCE is defined. Since glibc 2.19, <setjmp.h> exposes only

 the System V version of setjmp(). Programs that need the BSD semantics

 should replace calls to setjmp() with calls to sigsetjmp() with a non?

 zero savesigs argument.

 setjmp() and longjmp() can be useful for dealing with errors inside

 deeply nested function calls or to allow a signal handler to pass con?

 trol to a specific point in the program, rather than returning to the

 point where the handler interrupted the main program. In the latter

 case, if you want to portably save and restore signal masks, use

 sigsetjmp() and siglongjmp(). See also the discussion of program read?

 ability below.

 The compiler may optimize variables into registers, and longjmp() may

 restore the values of other registers in addition to the stack pointer

 and program counter. Consequently, the values of automatic variables

 are unspecified after a call to longjmp() if they meet all the follow?

 ing criteria:

 ? they are local to the function that made the corresponding setjmp()

 call;

 ? their values are changed between the calls to setjmp() and

 longjmp(); and

 ? they are not declared as volatile.

 Analogous remarks apply for siglongjmp().

 Nonlocal gotos and program readability Page 3/5

 While it can be abused, the traditional C "goto" statement at least has

 the benefit that lexical cues (the goto statement and the target label)

 allow the programmer to easily perceive the flow of control. Nonlocal

 gotos provide no such cues: multiple setjmp() calls might employ the

 same jmp_buf variable so that the content of the variable may change

 over the lifetime of the application. Consequently, the programmer may

 be forced to perform detailed reading of the code to determine the dy?

 namic target of a particular longjmp() call. (To make the programmer's

 life easier, each setjmp() call should employ a unique jmp_buf vari?

 able.)

 Adding further difficulty, the setjmp() and longjmp() calls may not

 even be in the same source code module.

 In summary, nonlocal gotos can make programs harder to understand and

 maintain, and an alternative should be used if possible.

 Caveats

 If the function which called setjmp() returns before longjmp() is

 called, the behavior is undefined. Some kind of subtle or unsubtle

 chaos is sure to result.

 If, in a multithreaded program, a longjmp() call employs an env buffer

 that was initialized by a call to setjmp() in a different thread, the

 behavior is undefined.

 POSIX.1-2008 Technical Corrigendum 2 adds longjmp() and siglongjmp() to

 the list of async-signal-safe functions. However, the standard recom?

 mends avoiding the use of these functions from signal handlers and goes

 on to point out that if these functions are called from a signal han?

 dler that interrupted a call to a non-async-signal-safe function (or

 some equivalent, such as the steps equivalent to exit(3) that occur

 upon a return from the initial call to main()), the behavior is unde?

 fined if the program subsequently makes a call to a non-async-signal-

 safe function. The only way of avoiding undefined behavior is to en?

 sure one of the following:

 * After long jumping from the signal handler, the program does not

 call any non-async-signal-safe functions and does not return from Page 4/5

 the initial call to main().

 * Any signal whose handler performs a long jump must be blocked during

 every call to a non-async-signal-safe function and no non-async-sig?

 nal-safe functions are called after returning from the initial call

 to main().

SEE ALSO

 signal(7), signal-safety(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

 2017-03-13 SETJMP(3)

Page 5/5

