
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'signalfd.2' command

$ man signalfd.2

SIGNALFD(2) Linux Programmer's Manual SIGNALFD(2)

NAME

 signalfd - create a file descriptor for accepting signals

SYNOPSIS

 #include <sys/signalfd.h>

 int signalfd(int fd, const sigset_t *mask, int flags);

DESCRIPTION

 signalfd() creates a file descriptor that can be used to accept signals

 targeted at the caller. This provides an alternative to the use of a

 signal handler or sigwaitinfo(2), and has the advantage that the file

 descriptor may be monitored by select(2), poll(2), and epoll(7).

 The mask argument specifies the set of signals that the caller wishes

 to accept via the file descriptor. This argument is a signal set whose

 contents can be initialized using the macros described in sigsetops(3).

 Normally, the set of signals to be received via the file descriptor

 should be blocked using sigprocmask(2), to prevent the signals being

 handled according to their default dispositions. It is not possible to

 receive SIGKILL or SIGSTOP signals via a signalfd file descriptor;

 these signals are silently ignored if specified in mask.

 If the fd argument is -1, then the call creates a new file descriptor

 and associates the signal set specified in mask with that file descrip?

 tor. If fd is not -1, then it must specify a valid existing signalfd

 file descriptor, and mask is used to replace the signal set associated Page 1/9

 with that file descriptor.

 Starting with Linux 2.6.27, the following values may be bitwise ORed in

 flags to change the behavior of signalfd():

 SFD_NONBLOCK Set the O_NONBLOCK file status flag on the open file de?

 scription (see open(2)) referred to by the new file de?

 scriptor. Using this flag saves extra calls to fcntl(2)

 to achieve the same result.

 SFD_CLOEXEC Set the close-on-exec (FD_CLOEXEC) flag on the new file

 descriptor. See the description of the O_CLOEXEC flag in

 open(2) for reasons why this may be useful.

 In Linux up to version 2.6.26, the flags argument is unused, and must

 be specified as zero.

 signalfd() returns a file descriptor that supports the following opera?

 tions:

 read(2)

 If one or more of the signals specified in mask is pending for

 the process, then the buffer supplied to read(2) is used to re?

 turn one or more signalfd_siginfo structures (see below) that

 describe the signals. The read(2) returns information for as

 many signals as are pending and will fit in the supplied buffer.

 The buffer must be at least sizeof(struct signalfd_siginfo)

 bytes. The return value of the read(2) is the total number of

 bytes read.

 As a consequence of the read(2), the signals are consumed, so

 that they are no longer pending for the process (i.e., will not

 be caught by signal handlers, and cannot be accepted using sig?

 waitinfo(2)).

 If none of the signals in mask is pending for the process, then

 the read(2) either blocks until one of the signals in mask is

 generated for the process, or fails with the error EAGAIN if the

 file descriptor has been made nonblocking.

 poll(2), select(2) (and similar)

 The file descriptor is readable (the select(2) readfds argument; Page 2/9

 the poll(2) POLLIN flag) if one or more of the signals in mask

 is pending for the process.

 The signalfd file descriptor also supports the other file-de?

 scriptor multiplexing APIs: pselect(2), ppoll(2), and epoll(7).

 close(2)

 When the file descriptor is no longer required it should be

 closed. When all file descriptors associated with the same sig?

 nalfd object have been closed, the resources for object are

 freed by the kernel.

 The signalfd_siginfo structure

 The format of the signalfd_siginfo structure(s) returned by read(2)s

 from a signalfd file descriptor is as follows:

 struct signalfd_siginfo {

 uint32_t ssi_signo; /* Signal number */

 int32_t ssi_errno; /* Error number (unused) */

 int32_t ssi_code; /* Signal code */

 uint32_t ssi_pid; /* PID of sender */

 uint32_t ssi_uid; /* Real UID of sender */

 int32_t ssi_fd; /* File descriptor (SIGIO) */

 uint32_t ssi_tid; /* Kernel timer ID (POSIX timers)

 uint32_t ssi_band; /* Band event (SIGIO) */

 uint32_t ssi_overrun; /* POSIX timer overrun count */

 uint32_t ssi_trapno; /* Trap number that caused signal */

 int32_t ssi_status; /* Exit status or signal (SIGCHLD) */

 int32_t ssi_int; /* Integer sent by sigqueue(3) */

 uint64_t ssi_ptr; /* Pointer sent by sigqueue(3) */

 uint64_t ssi_utime; /* User CPU time consumed (SIGCHLD) */

 uint64_t ssi_stime; /* System CPU time consumed

 (SIGCHLD) */

 uint64_t ssi_addr; /* Address that generated signal

 (for hardware-generated signals) */

 uint16_t ssi_addr_lsb; /* Least significant bit of address

 (SIGBUS; since Linux 2.6.37) Page 3/9

 uint8_t pad[X]; /* Pad size to 128 bytes (allow for

 additional fields in the future) */

 };

 Each of the fields in this structure is analogous to the similarly

 named field in the siginfo_t structure. The siginfo_t structure is de?

 scribed in sigaction(2). Not all fields in the returned signalfd_sig?

 info structure will be valid for a specific signal; the set of valid

 fields can be determined from the value returned in the ssi_code field.

 This field is the analog of the siginfo_t si_code field; see sigac?

 tion(2) for details.

 fork(2) semantics

 After a fork(2), the child inherits a copy of the signalfd file de?

 scriptor. A read(2) from the file descriptor in the child will return

 information about signals queued to the child.

 Semantics of file descriptor passing

 As with other file descriptors, signalfd file descriptors can be passed

 to another process via a UNIX domain socket (see unix(7)). In the re?

 ceiving process, a read(2) from the received file descriptor will re?

 turn information about signals queued to that process.

 execve(2) semantics

 Just like any other file descriptor, a signalfd file descriptor remains

 open across an execve(2), unless it has been marked for close-on-exec

 (see fcntl(2)). Any signals that were available for reading before the

 execve(2) remain available to the newly loaded program. (This is anal?

 ogous to traditional signal semantics, where a blocked signal that is

 pending remains pending across an execve(2).)

 Thread semantics

 The semantics of signalfd file descriptors in a multithreaded program

 mirror the standard semantics for signals. In other words, when a

 thread reads from a signalfd file descriptor, it will read the signals

 that are directed to the thread itself and the signals that are di?

 rected to the process (i.e., the entire thread group). (A thread will

 not be able to read signals that are directed to other threads in the Page 4/9

 process.)

 epoll(7) semantics

 If a process adds (via epoll_ctl(2)) a signalfd file descriptor to an

 epoll(7) instance, then epoll_wait(2) returns events only for signals

 sent to that process. In particular, if the process then uses fork(2)

 to create a child process, then the child will be able to read(2) sig?

 nals that are sent to it using the signalfd file descriptor, but

 epoll_wait(2) will not indicate that the signalfd file descriptor is

 ready. In this scenario, a possible workaround is that after the

 fork(2), the child process can close the signalfd file descriptor that

 it inherited from the parent process and then create another signalfd

 file descriptor and add it to the epoll instance. Alternatively, the

 parent and the child could delay creating their (separate) signalfd

 file descriptors and adding them to the epoll instance until after the

 call to fork(2).

RETURN VALUE

 On success, signalfd() returns a signalfd file descriptor; this is ei?

 ther a new file descriptor (if fd was -1), or fd if fd was a valid sig?

 nalfd file descriptor. On error, -1 is returned and errno is set to

 indicate the error.

ERRORS

 EBADF The fd file descriptor is not a valid file descriptor.

 EINVAL fd is not a valid signalfd file descriptor.

 EINVAL flags is invalid; or, in Linux 2.6.26 or earlier, flags is non?

 zero.

 EMFILE The per-process limit on the number of open file descriptors has

 been reached.

 ENFILE The system-wide limit on the total number of open files has been

 reached.

 ENODEV Could not mount (internal) anonymous inode device.

 ENOMEM There was insufficient memory to create a new signalfd file de?

 scriptor.

VERSIONS Page 5/9

 signalfd() is available on Linux since kernel 2.6.22. Working support

 is provided in glibc since version 2.8. The signalfd4() system call

 (see NOTES) is available on Linux since kernel 2.6.27.

CONFORMING TO

 signalfd() and signalfd4() are Linux-specific.

NOTES

 A process can create multiple signalfd file descriptors. This makes it

 possible to accept different signals on different file descriptors.

 (This may be useful if monitoring the file descriptors using select(2),

 poll(2), or epoll(7): the arrival of different signals will make dif?

 ferent file descriptors ready.) If a signal appears in the mask of

 more than one of the file descriptors, then occurrences of that signal

 can be read (once) from any one of the file descriptors.

 Attempts to include SIGKILL and SIGSTOP in mask are silently ignored.

 The signal mask employed by a signalfd file descriptor can be viewed

 via the entry for the corresponding file descriptor in the process's

 /proc/[pid]/fdinfo directory. See proc(5) for further details.

 Limitations

 The signalfd mechanism can't be used to receive signals that are syn?

 chronously generated, such as the SIGSEGV signal that results from ac?

 cessing an invalid memory address or the SIGFPE signal that results

 from an arithmetic error. Such signals can be caught only via signal

 handler.

 As described above, in normal usage one blocks the signals that will be

 accepted via signalfd(). If spawning a child process to execute a

 helper program (that does not need the signalfd file descriptor), then,

 after the call to fork(2), you will normally want to unblock those sig?

 nals before calling execve(2), so that the helper program can see any

 signals that it expects to see. Be aware, however, that this won't be

 possible in the case of a helper program spawned behind the scenes by

 any library function that the program may call. In such cases, one

 must fall back to using a traditional signal handler that writes to a

 file descriptor monitored by select(2), poll(2), or epoll(7). Page 6/9

 C library/kernel differences

 The underlying Linux system call requires an additional argument,

 size_t sizemask, which specifies the size of the mask argument. The

 glibc signalfd() wrapper function does not include this argument, since

 it provides the required value for the underlying system call.

 There are two underlying Linux system calls: signalfd() and the more

 recent signalfd4(). The former system call does not implement a flags

 argument. The latter system call implements the flags values described

 above. Starting with glibc 2.9, the signalfd() wrapper function will

 use signalfd4() where it is available.

BUGS

 In kernels before 2.6.25, the ssi_ptr and ssi_int fields are not filled

 in with the data accompanying a signal sent by sigqueue(3).

EXAMPLES

 The program below accepts the signals SIGINT and SIGQUIT via a signalfd

 file descriptor. The program terminates after accepting a SIGQUIT sig?

 nal. The following shell session demonstrates the use of the program:

 $./signalfd_demo

 ^C # Control-C generates SIGINT

 Got SIGINT

 ^C

 Got SIGINT

 ^\ # Control-\ generates SIGQUIT

 Got SIGQUIT

 $

 Program source

 #include <sys/signalfd.h>

 #include <signal.h>

 #include <unistd.h>

 #include <stdlib.h>

 #include <stdio.h>

 #define handle_error(msg) \

 do { perror(msg); exit(EXIT_FAILURE); } while (0) Page 7/9

 int

 main(int argc, char *argv[])

 {

 sigset_t mask;

 int sfd;

 struct signalfd_siginfo fdsi;

 ssize_t s;

 sigemptyset(&mask);

 sigaddset(&mask, SIGINT);

 sigaddset(&mask, SIGQUIT);

 /* Block signals so that they aren't handled

 according to their default dispositions */

 if (sigprocmask(SIG_BLOCK, &mask, NULL) == -1)

 handle_error("sigprocmask");

 sfd = signalfd(-1, &mask, 0);

 if (sfd == -1)

 handle_error("signalfd");

 for (;;) {

 s = read(sfd, &fdsi, sizeof(fdsi));

 if (s != sizeof(fdsi))

 handle_error("read");

 if (fdsi.ssi_signo == SIGINT) {

 printf("Got SIGINT\n");

 } else if (fdsi.ssi_signo == SIGQUIT) {

 printf("Got SIGQUIT\n");

 exit(EXIT_SUCCESS);

 } else {

 printf("Read unexpected signal\n");

 }

 }

 }

SEE ALSO

 eventfd(2), poll(2), read(2), select(2), sigaction(2), sigprocmask(2), Page 8/9

 sigwaitinfo(2), timerfd_create(2), sigsetops(3), sigwait(3), epoll(7),

 signal(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-11-01 SIGNALFD(2)

Page 9/9

