
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'signal.7' command

$ man signal.7

SIGNAL(7) Linux Programmer's Manual SIGNAL(7)

NAME

 signal - overview of signals

DESCRIPTION

 Linux supports both POSIX reliable signals (hereinafter "standard sig?

 nals") and POSIX real-time signals.

 Signal dispositions

 Each signal has a current disposition, which determines how the process

 behaves when it is delivered the signal.

 The entries in the "Action" column of the table below specify the de?

 fault disposition for each signal, as follows:

 Term Default action is to terminate the process.

 Ign Default action is to ignore the signal.

 Core Default action is to terminate the process and dump core (see

 core(5)).

 Stop Default action is to stop the process.

 Cont Default action is to continue the process if it is currently

 stopped.

 A process can change the disposition of a signal using sigaction(2) or

 signal(2). (The latter is less portable when establishing a signal

 handler; see signal(2) for details.) Using these system calls, a

 process can elect one of the following behaviors to occur on delivery

 of the signal: perform the default action; ignore the signal; or catch Page 1/16

 the signal with a signal handler, a programmer-defined function that is

 automatically invoked when the signal is delivered.

 By default, a signal handler is invoked on the normal process stack.

 It is possible to arrange that the signal handler uses an alternate

 stack; see sigaltstack(2) for a discussion of how to do this and when

 it might be useful.

 The signal disposition is a per-process attribute: in a multithreaded

 application, the disposition of a particular signal is the same for all

 threads.

 A child created via fork(2) inherits a copy of its parent's signal dis?

 positions. During an execve(2), the dispositions of handled signals

 are reset to the default; the dispositions of ignored signals are left

 unchanged.

 Sending a signal

 The following system calls and library functions allow the caller to

 send a signal:

 raise(3)

 Sends a signal to the calling thread.

 kill(2)

 Sends a signal to a specified process, to all members of a spec?

 ified process group, or to all processes on the system.

 pidfd_send_signal(2)

 Sends a signal to a process identified by a PID file descriptor.

 killpg(3)

 Sends a signal to all of the members of a specified process

 group.

 pthread_kill(3)

 Sends a signal to a specified POSIX thread in the same process

 as the caller.

 tgkill(2)

 Sends a signal to a specified thread within a specific process.

 (This is the system call used to implement pthread_kill(3).)

 sigqueue(3) Page 2/16

 Sends a real-time signal with accompanying data to a specified

 process.

 Waiting for a signal to be caught

 The following system calls suspend execution of the calling thread un?

 til a signal is caught (or an unhandled signal terminates the process):

 pause(2)

 Suspends execution until any signal is caught.

 sigsuspend(2)

 Temporarily changes the signal mask (see below) and suspends ex?

 ecution until one of the unmasked signals is caught.

 Synchronously accepting a signal

 Rather than asynchronously catching a signal via a signal handler, it

 is possible to synchronously accept the signal, that is, to block exe?

 cution until the signal is delivered, at which point the kernel returns

 information about the signal to the caller. There are two general ways

 to do this:

 * sigwaitinfo(2), sigtimedwait(2), and sigwait(3) suspend execution un?

 til one of the signals in a specified set is delivered. Each of

 these calls returns information about the delivered signal.

 * signalfd(2) returns a file descriptor that can be used to read infor?

 mation about signals that are delivered to the caller. Each read(2)

 from this file descriptor blocks until one of the signals in the set

 specified in the signalfd(2) call is delivered to the caller. The

 buffer returned by read(2) contains a structure describing the sig?

 nal.

 Signal mask and pending signals

 A signal may be blocked, which means that it will not be delivered un?

 til it is later unblocked. Between the time when it is generated and

 when it is delivered a signal is said to be pending.

 Each thread in a process has an independent signal mask, which indi?

 cates the set of signals that the thread is currently blocking. A

 thread can manipulate its signal mask using pthread_sigmask(3). In a

 traditional single-threaded application, sigprocmask(2) can be used to Page 3/16

 manipulate the signal mask.

 A child created via fork(2) inherits a copy of its parent's signal

 mask; the signal mask is preserved across execve(2).

 A signal may be process-directed or thread-directed. A process-di?

 rected signal is one that is targeted at (and thus pending for) the

 process as a whole. A signal may be process-directed because it was

 generated by the kernel for reasons other than a hardware exception, or

 because it was sent using kill(2) or sigqueue(3). A thread-directed

 signal is one that is targeted at a specific thread. A signal may be

 thread-directed because it was generated as a consequence of executing

 a specific machine-language instruction that triggered a hardware ex?

 ception (e.g., SIGSEGV for an invalid memory access, or SIGFPE for a

 math error), or because it was targeted at a specific thread using in?

 terfaces such as tgkill(2) or pthread_kill(3).

 A process-directed signal may be delivered to any one of the threads

 that does not currently have the signal blocked. If more than one of

 the threads has the signal unblocked, then the kernel chooses an arbi?

 trary thread to which to deliver the signal.

 A thread can obtain the set of signals that it currently has pending

 using sigpending(2). This set will consist of the union of the set of

 pending process-directed signals and the set of signals pending for the

 calling thread.

 A child created via fork(2) initially has an empty pending signal set;

 the pending signal set is preserved across an execve(2).

 Execution of signal handlers

 Whenever there is a transition from kernel-mode to user-mode execution

 (e.g., on return from a system call or scheduling of a thread onto the

 CPU), the kernel checks whether there is a pending unblocked signal for

 which the process has established a signal handler. If there is such a

 pending signal, the following steps occur:

 1. The kernel performs the necessary preparatory steps for execution of

 the signal handler:

 a) The signal is removed from the set of pending signals. Page 4/16

 b) If the signal handler was installed by a call to sigaction(2)

 that specified the SA_ONSTACK flag and the thread has defined an

 alternate signal stack (using sigaltstack(2)), then that stack is

 installed.

 c) Various pieces of signal-related context are saved into a special

 frame that is created on the stack. The saved information in?

 cludes:

 + the program counter register (i.e., the address of the next in?

 struction in the main program that should be executed when the

 signal handler returns);

 + architecture-specific register state required for resuming the

 interrupted program;

 + the thread's current signal mask;

 + the thread's alternate signal stack settings.

 (If the signal handler was installed using the sigaction(2)

 SA_SIGINFO flag, then the above information is accessible via the

 ucontext_t object that is pointed to by the third argument of the

 signal handler.)

 d) Any signals specified in act->sa_mask when registering the han?

 dler with sigprocmask(2) are added to the thread's signal mask.

 The signal being delivered is also added to the signal mask, un?

 less SA_NODEFER was specified when registering the handler.

 These signals are thus blocked while the handler executes.

 2. The kernel constructs a frame for the signal handler on the stack.

 The kernel sets the program counter for the thread to point to the

 first instruction of the signal handler function, and configures the

 return address for that function to point to a piece of user-space

 code known as the signal trampoline (described in sigreturn(2)).

 3. The kernel passes control back to user-space, where execution com?

 mences at the start of the signal handler function.

 4. When the signal handler returns, control passes to the signal tram?

 poline code.

 5. The signal trampoline calls sigreturn(2), a system call that uses Page 5/16

 the information in the stack frame created in step 1 to restore the

 thread to its state before the signal handler was called. The

 thread's signal mask and alternate signal stack settings are re?

 stored as part of this procedure. Upon completion of the call to

 sigreturn(2), the kernel transfers control back to user space, and

 the thread recommences execution at the point where it was inter?

 rupted by the signal handler.

 Note that if the signal handler does not return (e.g., control is

 transferred out of the handler using siglongjmp(3), or the handler exe?

 cutes a new program with execve(2)), then the final step is not per?

 formed. In particular, in such scenarios it is the programmer's re?

 sponsibility to restore the state of the signal mask (using sigproc?

 mask(2)), if it is desired to unblock the signals that were blocked on

 entry to the signal handler. (Note that siglongjmp(3) may or may not

 restore the signal mask, depending on the savesigs value that was spec?

 ified in the corresponding call to sigsetjmp(3).)

 From the kernel's point of view, execution of the signal handler code

 is exactly the same as the execution of any other user-space code.

 That is to say, the kernel does not record any special state informa?

 tion indicating that the thread is currently excuting inside a signal

 handler. All necessary state information is maintained in user-space

 registers and the user-space stack. The depth to which nested signal

 handlers may be invoked is thus limited only by the user-space stack

 (and sensible software design!).

 Standard signals

 Linux supports the standard signals listed below. The second column of

 the table indicates which standard (if any) specified the signal:

 "P1990" indicates that the signal is described in the original

 POSIX.1-1990 standard; "P2001" indicates that the signal was added in

 SUSv2 and POSIX.1-2001.

 Signal Standard Action Comment

 ??

 SIGABRT P1990 Core Abort signal from abort(3) Page 6/16

 SIGALRM P1990 Term Timer signal from alarm(2)

 SIGBUS P2001 Core Bus error (bad memory access)

 SIGCHLD P1990 Ign Child stopped or terminated

 SIGCLD - Ign A synonym for SIGCHLD

 SIGCONT P1990 Cont Continue if stopped

 SIGEMT - Term Emulator trap

 SIGFPE P1990 Core Floating-point exception

 SIGHUP P1990 Term Hangup detected on controlling terminal

 or death of controlling process

 SIGILL P1990 Core Illegal Instruction

 SIGINFO - A synonym for SIGPWR

 SIGINT P1990 Term Interrupt from keyboard

 SIGIO - Term I/O now possible (4.2BSD)

 SIGIOT - Core IOT trap. A synonym for SIGABRT

 SIGKILL P1990 Term Kill signal

 SIGLOST - Term File lock lost (unused)

 SIGPIPE P1990 Term Broken pipe: write to pipe with no

 readers; see pipe(7)

 SIGPOLL P2001 Term Pollable event (Sys V);

 synonym for SIGIO

 SIGPROF P2001 Term Profiling timer expired

 SIGPWR - Term Power failure (System V)

 SIGQUIT P1990 Core Quit from keyboard

 SIGSEGV P1990 Core Invalid memory reference

 SIGSTKFLT - Term Stack fault on coprocessor (unused)

 SIGSTOP P1990 Stop Stop process

 SIGTSTP P1990 Stop Stop typed at terminal

 SIGSYS P2001 Core Bad system call (SVr4);

 see also seccomp(2)

 SIGTERM P1990 Term Termination signal

 SIGTRAP P2001 Core Trace/breakpoint trap

 SIGTTIN P1990 Stop Terminal input for background process

 SIGTTOU P1990 Stop Terminal output for background process Page 7/16

 SIGUNUSED - Core Synonymous with SIGSYS

 SIGURG P2001 Ign Urgent condition on socket (4.2BSD)

 SIGUSR1 P1990 Term User-defined signal 1

 SIGUSR2 P1990 Term User-defined signal 2

 SIGVTALRM P2001 Term Virtual alarm clock (4.2BSD)

 SIGXCPU P2001 Core CPU time limit exceeded (4.2BSD);

 see setrlimit(2)

 SIGXFSZ P2001 Core File size limit exceeded (4.2BSD);

 see setrlimit(2)

 SIGWINCH - Ign Window resize signal (4.3BSD, Sun)

 The signals SIGKILL and SIGSTOP cannot be caught, blocked, or ignored.

 Up to and including Linux 2.2, the default behavior for SIGSYS, SIGX?

 CPU, SIGXFSZ, and (on architectures other than SPARC and MIPS) SIGBUS

 was to terminate the process (without a core dump). (On some other

 UNIX systems the default action for SIGXCPU and SIGXFSZ is to terminate

 the process without a core dump.) Linux 2.4 conforms to the

 POSIX.1-2001 requirements for these signals, terminating the process

 with a core dump.

 SIGEMT is not specified in POSIX.1-2001, but nevertheless appears on

 most other UNIX systems, where its default action is typically to ter?

 minate the process with a core dump.

 SIGPWR (which is not specified in POSIX.1-2001) is typically ignored by

 default on those other UNIX systems where it appears.

 SIGIO (which is not specified in POSIX.1-2001) is ignored by default on

 several other UNIX systems.

 Queueing and delivery semantics for standard signals

 If multiple standard signals are pending for a process, the order in

 which the signals are delivered is unspecified.

 Standard signals do not queue. If multiple instances of a standard

 signal are generated while that signal is blocked, then only one in?

 stance of the signal is marked as pending (and the signal will be de?

 livered just once when it is unblocked). In the case where a standard

 signal is already pending, the siginfo_t structure (see sigaction(2)) Page 8/16

 associated with that signal is not overwritten on arrival of subsequent

 instances of the same signal. Thus, the process will receive the in?

 formation associated with the first instance of the signal.

 Signal numbering for standard signals

 The numeric value for each signal is given in the table below. As

 shown in the table, many signals have different numeric values on dif?

 ferent architectures. The first numeric value in each table row shows

 the signal number on x86, ARM, and most other architectures; the second

 value is for Alpha and SPARC; the third is for MIPS; and the last is

 for PARISC. A dash (-) denotes that a signal is absent on the corre?

 sponding architecture.

 Signal x86/ARM Alpha/ MIPS PARISC Notes

 most others SPARC

 ???

 SIGHUP 1 1 1 1

 SIGINT 2 2 2 2

 SIGQUIT 3 3 3 3

 SIGILL 4 4 4 4

 SIGTRAP 5 5 5 5

 SIGABRT 6 6 6 6

 SIGIOT 6 6 6 6

 SIGBUS 7 10 10 10

 SIGEMT - 7 7 -

 SIGFPE 8 8 8 8

 SIGKILL 9 9 9 9

 SIGUSR1 10 30 16 16

 SIGSEGV 11 11 11 11

 SIGUSR2 12 31 17 17

 SIGPIPE 13 13 13 13

 SIGALRM 14 14 14 14

 SIGTERM 15 15 15 15

 SIGSTKFLT 16 - - 7

 SIGCHLD 17 20 18 18 Page 9/16

 SIGCLD - - 18 -

 SIGCONT 18 19 25 26

 SIGSTOP 19 17 23 24

 SIGTSTP 20 18 24 25

 SIGTTIN 21 21 26 27

 SIGTTOU 22 22 27 28

 SIGURG 23 16 21 29

 SIGXCPU 24 24 30 12

 SIGXFSZ 25 25 31 30

 SIGVTALRM 26 26 28 20

 SIGPROF 27 27 29 21

 SIGWINCH 28 28 20 23

 SIGIO 29 23 22 22

 SIGPOLL Same as SIGIO

 SIGPWR 30 29/- 19 19

 SIGINFO - 29/- - -

 SIGLOST - -/29 - -

 SIGSYS 31 12 12 31

 SIGUNUSED 31 - - 31

 Note the following:

 * Where defined, SIGUNUSED is synonymous with SIGSYS. Since glibc

 2.26, SIGUNUSED is no longer defined on any architecture.

 * Signal 29 is SIGINFO/SIGPWR (synonyms for the same value) on Alpha

 but SIGLOST on SPARC.

 Real-time signals

 Starting with version 2.2, Linux supports real-time signals as origi?

 nally defined in the POSIX.1b real-time extensions (and now included in

 POSIX.1-2001). The range of supported real-time signals is defined by

 the macros SIGRTMIN and SIGRTMAX. POSIX.1-2001 requires that an imple?

 mentation support at least _POSIX_RTSIG_MAX (8) real-time signals.

 The Linux kernel supports a range of 33 different real-time signals,

 numbered 32 to 64. However, the glibc POSIX threads implementation in?

 ternally uses two (for NPTL) or three (for LinuxThreads) real-time sig? Page 10/16

 nals (see pthreads(7)), and adjusts the value of SIGRTMIN suitably (to

 34 or 35). Because the range of available real-time signals varies ac?

 cording to the glibc threading implementation (and this variation can

 occur at run time according to the available kernel and glibc), and in?

 deed the range of real-time signals varies across UNIX systems, pro?

 grams should never refer to real-time signals using hard-coded numbers,

 but instead should always refer to real-time signals using the notation

 SIGRTMIN+n, and include suitable (run-time) checks that SIGRTMIN+n does

 not exceed SIGRTMAX.

 Unlike standard signals, real-time signals have no predefined meanings:

 the entire set of real-time signals can be used for application-defined

 purposes.

 The default action for an unhandled real-time signal is to terminate

 the receiving process.

 Real-time signals are distinguished by the following:

 1. Multiple instances of real-time signals can be queued. By con?

 trast, if multiple instances of a standard signal are delivered

 while that signal is currently blocked, then only one instance is

 queued.

 2. If the signal is sent using sigqueue(3), an accompanying value (ei?

 ther an integer or a pointer) can be sent with the signal. If the

 receiving process establishes a handler for this signal using the

 SA_SIGINFO flag to sigaction(2), then it can obtain this data via

 the si_value field of the siginfo_t structure passed as the second

 argument to the handler. Furthermore, the si_pid and si_uid fields

 of this structure can be used to obtain the PID and real user ID of

 the process sending the signal.

 3. Real-time signals are delivered in a guaranteed order. Multiple

 real-time signals of the same type are delivered in the order they

 were sent. If different real-time signals are sent to a process,

 they are delivered starting with the lowest-numbered signal.

 (I.e., low-numbered signals have highest priority.) By contrast,

 if multiple standard signals are pending for a process, the order Page 11/16

 in which they are delivered is unspecified.

 If both standard and real-time signals are pending for a process, POSIX

 leaves it unspecified which is delivered first. Linux, like many other

 implementations, gives priority to standard signals in this case.

 According to POSIX, an implementation should permit at least

 _POSIX_SIGQUEUE_MAX (32) real-time signals to be queued to a process.

 However, Linux does things differently. In kernels up to and including

 2.6.7, Linux imposes a system-wide limit on the number of queued real-

 time signals for all processes. This limit can be viewed and (with

 privilege) changed via the /proc/sys/kernel/rtsig-max file. A related

 file, /proc/sys/kernel/rtsig-nr, can be used to find out how many real-

 time signals are currently queued. In Linux 2.6.8, these /proc inter?

 faces were replaced by the RLIMIT_SIGPENDING resource limit, which

 specifies a per-user limit for queued signals; see setrlimit(2) for

 further details.

 The addition of real-time signals required the widening of the signal

 set structure (sigset_t) from 32 to 64 bits. Consequently, various

 system calls were superseded by new system calls that supported the

 larger signal sets. The old and new system calls are as follows:

 Linux 2.0 and earlier Linux 2.2 and later

 sigaction(2) rt_sigaction(2)

 sigpending(2) rt_sigpending(2)

 sigprocmask(2) rt_sigprocmask(2)

 sigreturn(2) rt_sigreturn(2)

 sigsuspend(2) rt_sigsuspend(2)

 sigtimedwait(2) rt_sigtimedwait(2)

 Interruption of system calls and library functions by signal handlers

 If a signal handler is invoked while a system call or library function

 call is blocked, then either:

 * the call is automatically restarted after the signal handler returns;

 or

 * the call fails with the error EINTR.

 Which of these two behaviors occurs depends on the interface and Page 12/16

 whether or not the signal handler was established using the SA_RESTART

 flag (see sigaction(2)). The details vary across UNIX systems; below,

 the details for Linux.

 If a blocked call to one of the following interfaces is interrupted by

 a signal handler, then the call is automatically restarted after the

 signal handler returns if the SA_RESTART flag was used; otherwise the

 call fails with the error EINTR:

 * read(2), readv(2), write(2), writev(2), and ioctl(2) calls on "slow"

 devices. A "slow" device is one where the I/O call may block for an

 indefinite time, for example, a terminal, pipe, or socket. If an I/O

 call on a slow device has already transferred some data by the time

 it is interrupted by a signal handler, then the call will return a

 success status (normally, the number of bytes transferred). Note

 that a (local) disk is not a slow device according to this defini?

 tion; I/O operations on disk devices are not interrupted by signals.

 * open(2), if it can block (e.g., when opening a FIFO; see fifo(7)).

 * wait(2), wait3(2), wait4(2), waitid(2), and waitpid(2).

 * Socket interfaces: accept(2), connect(2), recv(2), recvfrom(2),

 recvmmsg(2), recvmsg(2), send(2), sendto(2), and sendmsg(2), unless a

 timeout has been set on the socket (see below).

 * File locking interfaces: flock(2) and the F_SETLKW and F_OFD_SETLKW

 operations of fcntl(2)

 * POSIX message queue interfaces: mq_receive(3), mq_timedreceive(3),

 mq_send(3), and mq_timedsend(3).

 * futex(2) FUTEX_WAIT (since Linux 2.6.22; beforehand, always failed

 with EINTR).

 * getrandom(2).

 * pthread_mutex_lock(3), pthread_cond_wait(3), and related APIs.

 * futex(2) FUTEX_WAIT_BITSET.

 * POSIX semaphore interfaces: sem_wait(3) and sem_timedwait(3) (since

 Linux 2.6.22; beforehand, always failed with EINTR).

 * read(2) from an inotify(7) file descriptor (since Linux 3.8; before?

 hand, always failed with EINTR). Page 13/16

 The following interfaces are never restarted after being interrupted by

 a signal handler, regardless of the use of SA_RESTART; they always fail

 with the error EINTR when interrupted by a signal handler:

 * "Input" socket interfaces, when a timeout (SO_RCVTIMEO) has been set

 on the socket using setsockopt(2): accept(2), recv(2), recvfrom(2),

 recvmmsg(2) (also with a non-NULL timeout argument), and recvmsg(2).

 * "Output" socket interfaces, when a timeout (SO_RCVTIMEO) has been set

 on the socket using setsockopt(2): connect(2), send(2), sendto(2),

 and sendmsg(2).

 * Interfaces used to wait for signals: pause(2), sigsuspend(2), sig?

 timedwait(2), and sigwaitinfo(2).

 * File descriptor multiplexing interfaces: epoll_wait(2),

 epoll_pwait(2), poll(2), ppoll(2), select(2), and pselect(2).

 * System V IPC interfaces: msgrcv(2), msgsnd(2), semop(2), and semtime?

 dop(2).

 * Sleep interfaces: clock_nanosleep(2), nanosleep(2), and usleep(3).

 * io_getevents(2).

 The sleep(3) function is also never restarted if interrupted by a han?

 dler, but gives a success return: the number of seconds remaining to

 sleep.

 Interruption of system calls and library functions by stop signals

 On Linux, even in the absence of signal handlers, certain blocking in?

 terfaces can fail with the error EINTR after the process is stopped by

 one of the stop signals and then resumed via SIGCONT. This behavior is

 not sanctioned by POSIX.1, and doesn't occur on other systems.

 The Linux interfaces that display this behavior are:

 * "Input" socket interfaces, when a timeout (SO_RCVTIMEO) has been set

 on the socket using setsockopt(2): accept(2), recv(2), recvfrom(2),

 recvmmsg(2) (also with a non-NULL timeout argument), and recvmsg(2).

 * "Output" socket interfaces, when a timeout (SO_RCVTIMEO) has been set

 on the socket using setsockopt(2): connect(2), send(2), sendto(2),

 and sendmsg(2), if a send timeout (SO_SNDTIMEO) has been set.

 * epoll_wait(2), epoll_pwait(2). Page 14/16

 * semop(2), semtimedop(2).

 * sigtimedwait(2), sigwaitinfo(2).

 * Linux 3.7 and earlier: read(2) from an inotify(7) file descriptor

 * Linux 2.6.21 and earlier: futex(2) FUTEX_WAIT, sem_timedwait(3),

 sem_wait(3).

 * Linux 2.6.8 and earlier: msgrcv(2), msgsnd(2).

 * Linux 2.4 and earlier: nanosleep(2).

CONFORMING TO

 POSIX.1, except as noted.

NOTES

 For a discussion of async-signal-safe functions, see signal-safety(7).

 The /proc/[pid]/task/[tid]/status file contains various fields that

 show the signals that a thread is blocking (SigBlk), catching (SigCgt),

 or ignoring (SigIgn). (The set of signals that are caught or ignored

 will be the same across all threads in a process.) Other fields show

 the set of pending signals that are directed to the thread (SigPnd) as

 well as the set of pending signals that are directed to the process as

 a whole (ShdPnd). The corresponding fields in /proc/[pid]/status show

 the information for the main thread. See proc(5) for further details.

BUGS

 There are six signals that can be delivered as a consequence of a hard?

 ware exception: SIGBUS, SIGEMT, SIGFPE, SIGILL, SIGSEGV, and SIGTRAP.

 Which of these signals is delivered, for any given hardware exception,

 is not documented and does not always make sense.

 For example, an invalid memory access that causes delivery of SIGSEGV

 on one CPU architecture may cause delivery of SIGBUS on another archi?

 tecture, or vice versa.

 For another example, using the x86 int instruction with a forbidden ar?

 gument (any number other than 3 or 128) causes delivery of SIGSEGV,

 even though SIGILL would make more sense, because of how the CPU re?

 ports the forbidden operation to the kernel.

SEE ALSO

 kill(1), clone(2), getrlimit(2), kill(2), pidfd_send_signal(2), Page 15/16

 restart_syscall(2), rt_sigqueueinfo(2), setitimer(2), setrlimit(2),

 sgetmask(2), sigaction(2), sigaltstack(2), signal(2), signalfd(2), sig?

 pending(2), sigprocmask(2), sigreturn(2), sigsuspend(2), sigwait?

 info(2), abort(3), bsd_signal(3), killpg(3), longjmp(3),

 pthread_sigqueue(3), raise(3), sigqueue(3), sigset(3), sigsetops(3),

 sigvec(3), sigwait(3), strsignal(3), swapcontext(3), sysv_signal(3),

 core(5), proc(5), nptl(7), pthreads(7), sigevent(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-12-21 SIGNAL(7)

Page 16/16

