
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'setns.2' command

$ man setns.2

SETNS(2)                   Linux Programmer's Manual                  SETNS(2)

NAME

       setns - reassociate thread with a namespace

SYNOPSIS

       #define _GNU_SOURCE             /* See feature_test_macros(7) */

       #include <sched.h>

       int setns(int fd, int nstype);

DESCRIPTION

       The  setns() system call allows the calling thread to move into differ?

       ent namespaces.  The fd argument is one of the following:

       ? a  file  descriptor  referring  to  one  of  the  magic  links  in  a

         /proc/[pid]/ns/ directory (or a bind mount to such a link);

       ? a PID file descriptor (see pidfd_open(2)).

       The nstype argument is interpreted differently in each case.

   fd refers to a /proc/[pid]/ns/ link

       If  fd  refers to a /proc/[pid]/ns/ link, then setns() reassociates the

       calling thread with the namespace associated with that link, subject to

       any  constraints  imposed  by the nstype argument.  In this usage, each

       call to setns() changes just one of the caller's namespace memberships.

       The nstype argument specifies  which  type  of  namespace  the  calling

       thread  may  be  reassociated  with.  This argument can have one of the

       following values:

       0      Allow any type of namespace to be joined. Page 1/8



       CLONE_NEWCGROUP (since Linux 4.6)

              fd must refer to a cgroup namespace.

       CLONE_NEWIPC (since Linux 3.0)

              fd must refer to an IPC namespace.

       CLONE_NEWNET (since Linux 3.0)

              fd must refer to a network namespace.

       CLONE_NEWNS (since Linux 3.8)

              fd must refer to a mount namespace.

       CLONE_NEWPID (since Linux 3.8)

              fd must refer to a descendant PID namespace.

       CLONE_NEWTIME (since Linux 5.8)

              fd must refer to a time namespace.

       CLONE_NEWUSER (since Linux 3.8)

              fd must refer to a user namespace.

       CLONE_NEWUTS (since Linux 3.0)

              fd must refer to a UTS namespace.

       Specifying nstype as 0 suffices if the caller knows (or does not  care)

       what  type  of  namespace  is  referred to by fd.  Specifying a nonzero

       value for nstype is useful if the caller does not  know  what  type  of

       namespace  is  referred to by fd and wants to ensure that the namespace

       is of a particular type.  (The caller might not know the  type  of  the

       namespace  referred  to  by fd if the file descriptor was opened by an?

       other process and, for example, passed to the caller via a UNIX  domain

       socket.)

   fd is a PID file descriptor

       Since  Linux  5.8,  fd may refer to a PID file descriptor obtained from

       pidfd_open(2) or clone(3).  In this usage, setns() atomically moves the

       calling  thread  into  one or more of the same namespaces as the thread

       referred to by fd.

       The nstype argument is a bit mask specified by ORing  together  one  or

       more of the CLONE_NEW* namespace constants listed above.  The caller is

       moved into each of the target thread's namespaces that is specified  in

       nstype;  the  caller's memberships in the remaining namespaces are left Page 2/8



       unchanged.

       For example, the following code would move the  caller  into  the  same

       user,  network,  and  UTS  namespaces  as PID 1234, but would leave the

       caller's other namespace memberships unchanged:

           int fd = pidfd_open(1234, 0);

           setns(fd, CLONE_NEWUSER | CLONE_NEWNET | CLONE_NEWUTS);

   Details for specific namespace types

       Note the following details and  restrictions  when  reassociating  with

       specific namespace types:

       User namespaces

              A  process  reassociating itself with a user namespace must have

              the CAP_SYS_ADMIN  capability  in  the  target  user  namespace.

              (This necessarily implies that it is only possible to join a de?

              scendant user namespace.)   Upon  successfully  joining  a  user

              namespace,  a  process is granted all capabilities in that name?

              space, regardless of its user and group IDs.

              A multithreaded process  may  not  change  user  namespace  with

              setns().

              It  is not permitted to use setns() to reenter the caller's cur?

              rent user namespace.  This prevents a caller  that  has  dropped

              capabilities  from  regaining  those  capabilities via a call to

              setns().

              For security reasons, a process can't join a new user  namespace

              if  it  is sharing filesystem-related attributes (the attributes

              whose sharing is controlled by the clone(2) CLONE_FS flag)  with

              another process.

              For further details on user namespaces, see user_namespaces(7).

       Mount namespaces

              Changing  the  mount  namespace requires that the caller possess

              both CAP_SYS_CHROOT and CAP_SYS_ADMIN capabilities  in  its  own

              user namespace and CAP_SYS_ADMIN in the user namespace that owns

              the target mount namespace.

              A process can't join a new mount  namespace  if  it  is  sharing Page 3/8



              filesystem-related  attributes  (the attributes whose sharing is

              controlled by the clone(2) CLONE_FS flag) with another process.

              See user_namespaces(7) for details on the  interaction  of  user

              namespaces and mount namespaces.

       PID namespaces

              In  order  to  reassociate  itself with a new PID namespace, the

              caller must have the CAP_SYS_ADMIN capability both  in  its  own

              user  namespace  and  in the user namespace that owns the target

              PID namespace.

              Reassociating the PID  namespace  has  somewhat  different  from

              other  namespace types.  Reassociating the calling thread with a

              PID namespace changes only the PID namespace  that  subsequently

              created child processes of the caller will be placed in; it does

              not change the PID namespace of the caller itself.

              Reassociating with a PID namespace is allowed only if the target

              PID  namespace is a descendant (child, grandchild, etc.)  of, or

              is the same as, the current PID namespace of the caller.

              For further details on PID namespaces, see pid_namespaces(7).

       Cgroup namespaces

              In order to reassociate itself with a new cgroup namespace,  the

              caller  must  have  the CAP_SYS_ADMIN capability both in its own

              user namespace and in the user namespace that  owns  the  target

              cgroup namespace.

              Using  setns()  to change the caller's cgroup namespace does not

              change the caller's cgroup memberships.

       Network, IPC, time, and UTS namespaces

              In order to reassociate itself with a new network, IPC, time, or

              UTS namespace, the caller must have the CAP_SYS_ADMIN capability

              both in its own user namespace and in the  user  namespace  that

              owns the target namespace.

RETURN VALUE

       On success, setns() returns 0.  On failure, -1 is returned and errno is

       set to indicate the error. Page 4/8



ERRORS

       EBADF  fd is not a valid file descriptor.

       EINVAL fd refers to a namespace whose type does not match  that  speci?

              fied in nstype.

       EINVAL There  is  problem with reassociating the thread with the speci?

              fied namespace.

       EINVAL The caller tried to join an ancestor (parent,  grandparent,  and

              so on) PID namespace.

       EINVAL The  caller  attempted to join the user namespace in which it is

              already a member.

       EINVAL The caller shares filesystem (CLONE_FS)  state  (in  particular,

              the root directory) with other processes and tried to join a new

              user namespace.

       EINVAL The caller is multithreaded and tried to join a new  user  name?

              space.

       EINVAL fd  is  a PID file descriptor and nstype is invalid (e.g., it is

              0).

       ENOMEM Cannot allocate sufficient memory to change the specified  name?

              space.

       EPERM  The calling thread did not have the required capability for this

              operation.

       ESRCH  fd is a PID file descriptor but the  process  it  refers  to  no

              longer exists (i.e., it has terminated and been waited on).

VERSIONS

       The  setns() system call first appeared in Linux in kernel 3.0; library

       support was added to glibc in version 2.14.

CONFORMING TO

       The setns() system call is Linux-specific.

NOTES

       For further information on the /proc/[pid]/ns/ magic links,  see  name?

       spaces(7).

       Not  all of the attributes that can be shared when a new thread is cre?

       ated using clone(2) can be changed using setns(). Page 5/8



EXAMPLES

       The program below takes two or  more  arguments.   The  first  argument

       specifies   the   pathname   of   a   namespace  file  in  an  existing

       /proc/[pid]/ns/ directory.  The remaining arguments specify  a  command

       and  its  arguments.   The program opens the namespace file, joins that

       namespace using setns(), and executes the specified command inside that

       namespace.

       The  following shell session demonstrates the use of this program (com?

       piled as a binary named ns_exec) in conjunction with  the  CLONE_NEWUTS

       example  program  in  the clone(2) man page (complied as a binary named

       newuts).

       We begin by executing the example program  in  clone(2)  in  the  back?

       ground.  That program creates a child in a separate UTS namespace.  The

       child changes the hostname in its namespace, and  then  both  processes

       display  the hostnames in their UTS namespaces, so that we can see that

       they are different.

           $ su                   # Need privilege for namespace operations

           Password:

           # ./newuts bizarro &

           [1] 3549

           clone() returned 3550

           uts.nodename in child:  bizarro

           uts.nodename in parent: antero

           # uname -n             # Verify hostname in the shell

           antero

       We then run the program shown below, using it to execute a shell.   In?

       side  that  shell,  we  verify  that the hostname is the one set by the

       child created by the first program:

           # ./ns_exec /proc/3550/ns/uts /bin/bash

           # uname -n             # Executed in shell started by ns_exec

           bizarro

   Program source

       #define _GNU_SOURCE Page 6/8



       #include <fcntl.h>

       #include <sched.h>

       #include <unistd.h>

       #include <stdlib.h>

       #include <stdio.h>

       #define errExit(msg)    do { perror(msg); exit(EXIT_FAILURE); \

                               } while (0)

       int

       main(int argc, char *argv[])

       {

           int fd;

           if (argc < 3) {

               fprintf(stderr, "%s /proc/PID/ns/FILE cmd args...\n", argv[0]);

               exit(EXIT_FAILURE);

           }

           /* Get file descriptor for namespace; the file descriptor is opened

              with O_CLOEXEC so as to ensure that it is not inherited by the

              program that is later executed. */

           fd = open(argv[1], O_RDONLY | O_CLOEXEC);

           if (fd == -1)

               errExit("open");

           if (setns(fd, 0) == -1)       /* Join that namespace */

               errExit("setns");

           execvp(argv[2], &argv[2]);    /* Execute a command in namespace */

           errExit("execvp");

       }

SEE ALSO

       nsenter(1), clone(2),  fork(2),  unshare(2),  vfork(2),  namespaces(7),

       unix(7)

COLOPHON

       This  page  is  part of release 5.10 of the Linux man-pages project.  A

       description of the project, information about reporting bugs,  and  the

       latest     version     of     this    page,    can    be    found    at Page 7/8



       https://www.kernel.org/doc/man-pages/.

Linux                             2020-08-13                          SETNS(2)

Page 8/8


