
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'setfsuid32.2' command

$ man setfsuid32.2

SETFSUID(2) Linux Programmer's Manual SETFSUID(2)

NAME

 setfsuid - set user identity used for filesystem checks

SYNOPSIS

 #include <sys/fsuid.h>

 int setfsuid(uid_t fsuid);

DESCRIPTION

 On Linux, a process has both a filesystem user ID and an effective user

 ID. The (Linux-specific) filesystem user ID is used for permissions

 checking when accessing filesystem objects, while the effective user ID

 is used for various other kinds of permissions checks (see creden?

 tials(7)).

 Normally, the value of the process's filesystem user ID is the same as

 the value of its effective user ID. This is so, because whenever a

 process's effective user ID is changed, the kernel also changes the

 filesystem user ID to be the same as the new value of the effective

 user ID. A process can cause the value of its filesystem user ID to

 diverge from its effective user ID by using setfsuid() to change its

 filesystem user ID to the value given in fsuid.

 Explicit calls to setfsuid() and setfsgid(2) are (were) usually used

 only by programs such as the Linux NFS server that need to change what

 user and group ID is used for file access without a corresponding

 change in the real and effective user and group IDs. A change in the Page 1/3

 normal user IDs for a program such as the NFS server is (was) a secu?

 rity hole that can expose it to unwanted signals. (However, this issue

 is historical; see below.)

 setfsuid() will succeed only if the caller is the superuser or if fsuid

 matches either the caller's real user ID, effective user ID, saved set-

 user-ID, or current filesystem user ID.

RETURN VALUE

 On both success and failure, this call returns the previous filesystem

 user ID of the caller.

VERSIONS

 This system call is present in Linux since version 1.2.

CONFORMING TO

 setfsuid() is Linux-specific and should not be used in programs in?

 tended to be portable.

NOTES

 At the time when this system call was introduced, one process could

 send a signal to another process with the same effective user ID. This

 meant that if a privileged process changed its effective user ID for

 the purpose of file permission checking, then it could become vulnera?

 ble to receiving signals sent by another (unprivileged) process with

 the same user ID. The filesystem user ID attribute was thus added to

 allow a process to change its user ID for the purposes of file permis?

 sion checking without at the same time becoming vulnerable to receiving

 unwanted signals. Since Linux 2.0, signal permission handling is dif?

 ferent (see kill(2)), with the result that a process can change its ef?

 fective user ID without being vulnerable to receiving signals from un?

 wanted processes. Thus, setfsuid() is nowadays unneeded and should be

 avoided in new applications (likewise for setfsgid(2)).

 The original Linux setfsuid() system call supported only 16-bit user

 IDs. Subsequently, Linux 2.4 added setfsuid32() supporting 32-bit IDs.

 The glibc setfsuid() wrapper function transparently deals with the

 variation across kernel versions.

 C library/kernel differences Page 2/3

 In glibc 2.15 and earlier, when the wrapper for this system call deter?

 mines that the argument can't be passed to the kernel without integer

 truncation (because the kernel is old and does not support 32-bit user

 IDs), it will return -1 and set errno to EINVAL without attempting the

 system call.

BUGS

 No error indications of any kind are returned to the caller, and the

 fact that both successful and unsuccessful calls return the same value

 makes it impossible to directly determine whether the call succeeded or

 failed. Instead, the caller must resort to looking at the return value

 from a further call such as setfsuid(-1) (which will always fail), in

 order to determine if a preceding call to setfsuid() changed the

 filesystem user ID. At the very least, EPERM should be returned when

 the call fails (because the caller lacks the CAP_SETUID capability).

SEE ALSO

 kill(2), setfsgid(2), capabilities(7), credentials(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2019-05-09 SETFSUID(2)

Page 3/3

