
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'select_tut.2' command

$ man select_tut.2

SELECT_TUT(2) Linux Programmer's Manual SELECT_TUT(2)

NAME

 select, pselect - synchronous I/O multiplexing

SYNOPSIS

 See select(2)

DESCRIPTION

 The select() and pselect() system calls are used to efficiently monitor

 multiple file descriptors, to see if any of them is, or becomes,

 "ready"; that is, to see whether I/O becomes possible, or an "excep?

 tional condition" has occurred on any of the file descriptors.

 This page provides background and tutorial information on the use of

 these system calls. For details of the arguments and semantics of se?

 lect() and pselect(), see select(2).

 Combining signal and data events

 pselect() is useful if you are waiting for a signal as well as for file

 descriptor(s) to become ready for I/O. Programs that receive signals

 normally use the signal handler only to raise a global flag. The

 global flag will indicate that the event must be processed in the main

 loop of the program. A signal will cause the select() (or pselect())

 call to return with errno set to EINTR. This behavior is essential so

 that signals can be processed in the main loop of the program, other?

 wise select() would block indefinitely.

 Now, somewhere in the main loop will be a conditional to check the Page 1/13

 global flag. So we must ask: what if a signal arrives after the condi?

 tional, but before the select() call? The answer is that select()

 would block indefinitely, even though an event is actually pending.

 This race condition is solved by the pselect() call. This call can be

 used to set the signal mask to a set of signals that are to be received

 only within the pselect() call. For instance, let us say that the

 event in question was the exit of a child process. Before the start of

 the main loop, we would block SIGCHLD using sigprocmask(2). Our pse?

 lect() call would enable SIGCHLD by using an empty signal mask. Our

 program would look like:

 static volatile sig_atomic_t got_SIGCHLD = 0;

 static void

 child_sig_handler(int sig)

 {

 got_SIGCHLD = 1;

 }

 int

 main(int argc, char *argv[])

 {

 sigset_t sigmask, empty_mask;

 struct sigaction sa;

 fd_set readfds, writefds, exceptfds;

 int r;

 sigemptyset(&sigmask);

 sigaddset(&sigmask, SIGCHLD);

 if (sigprocmask(SIG_BLOCK, &sigmask, NULL) == -1) {

 perror("sigprocmask");

 exit(EXIT_FAILURE);

 }

 sa.sa_flags = 0;

 sa.sa_handler = child_sig_handler;

 sigemptyset(&sa.sa_mask);

 if (sigaction(SIGCHLD, &sa, NULL) == -1) { Page 2/13

 perror("sigaction");

 exit(EXIT_FAILURE);

 }

 sigemptyset(&empty_mask);

 for (;;) { /* main loop */

 /* Initialize readfds, writefds, and exceptfds

 before the pselect() call. (Code omitted.) */

 r = pselect(nfds, &readfds, &writefds, &exceptfds,

 NULL, &empty_mask);

 if (r == -1 && errno != EINTR) {

 /* Handle error */

 }

 if (got_SIGCHLD) {

 got_SIGCHLD = 0;

 /* Handle signalled event here; e.g., wait() for all

 terminated children. (Code omitted.) */

 }

 /* main body of program */

 }

 }

 Practical

 So what is the point of select()? Can't I just read and write to my

 file descriptors whenever I want? The point of select() is that it

 watches multiple descriptors at the same time and properly puts the

 process to sleep if there is no activity. UNIX programmers often find

 themselves in a position where they have to handle I/O from more than

 one file descriptor where the data flow may be intermittent. If you

 were to merely create a sequence of read(2) and write(2) calls, you

 would find that one of your calls may block waiting for data from/to a

 file descriptor, while another file descriptor is unused though ready

 for I/O. select() efficiently copes with this situation.

 Select law

 Many people who try to use select() come across behavior that is diffi? Page 3/13

 cult to understand and produces nonportable or borderline results. For

 instance, the above program is carefully written not to block at any

 point, even though it does not set its file descriptors to nonblocking

 mode. It is easy to introduce subtle errors that will remove the ad?

 vantage of using select(), so here is a list of essentials to watch for

 when using select().

 1. You should always try to use select() without a timeout. Your pro?

 gram should have nothing to do if there is no data available. Code

 that depends on timeouts is not usually portable and is difficult

 to debug.

 2. The value nfds must be properly calculated for efficiency as ex?

 plained above.

 3. No file descriptor must be added to any set if you do not intend to

 check its result after the select() call, and respond appropri?

 ately. See next rule.

 4. After select() returns, all file descriptors in all sets should be

 checked to see if they are ready.

 5. The functions read(2), recv(2), write(2), and send(2) do not neces?

 sarily read/write the full amount of data that you have requested.

 If they do read/write the full amount, it's because you have a low

 traffic load and a fast stream. This is not always going to be the

 case. You should cope with the case of your functions managing to

 send or receive only a single byte.

 6. Never read/write only in single bytes at a time unless you are re?

 ally sure that you have a small amount of data to process. It is

 extremely inefficient not to read/write as much data as you can

 buffer each time. The buffers in the example below are 1024 bytes

 although they could easily be made larger.

 7. Calls to read(2), recv(2), write(2), send(2), and select() can fail

 with the error EINTR, and calls to read(2), recv(2) write(2), and

 send(2) can fail with errno set to EAGAIN (EWOULDBLOCK). These re?

 sults must be properly managed (not done properly above). If your

 program is not going to receive any signals, then it is unlikely Page 4/13

 you will get EINTR. If your program does not set nonblocking I/O,

 you will not get EAGAIN.

 8. Never call read(2), recv(2), write(2), or send(2) with a buffer

 length of zero.

 9. If the functions read(2), recv(2), write(2), and send(2) fail with

 errors other than those listed in 7., or one of the input functions

 returns 0, indicating end of file, then you should not pass that

 file descriptor to select() again. In the example below, I close

 the file descriptor immediately, and then set it to -1 to prevent

 it being included in a set.

 10. The timeout value must be initialized with each new call to se?

 lect(), since some operating systems modify the structure. pse?

 lect() however does not modify its timeout structure.

 11. Since select() modifies its file descriptor sets, if the call is

 being used in a loop, then the sets must be reinitialized before

 each call.

RETURN VALUE

 See select(2).

NOTES

 Generally speaking, all operating systems that support sockets also

 support select(). select() can be used to solve many problems in a

 portable and efficient way that naive programmers try to solve in a

 more complicated manner using threads, forking, IPCs, signals, memory

 sharing, and so on.

 The poll(2) system call has the same functionality as select(), and is

 somewhat more efficient when monitoring sparse file descriptor sets.

 It is nowadays widely available, but historically was less portable

 than select().

 The Linux-specific epoll(7) API provides an interface that is more ef?

 ficient than select(2) and poll(2) when monitoring large numbers of

 file descriptors.

EXAMPLES

 Here is an example that better demonstrates the true utility of se? Page 5/13

 lect(). The listing below is a TCP forwarding program that forwards

 from one TCP port to another.

 #include <stdlib.h>

 #include <stdio.h>

 #include <unistd.h>

 #include <sys/select.h>

 #include <string.h>

 #include <signal.h>

 #include <sys/socket.h>

 #include <netinet/in.h>

 #include <arpa/inet.h>

 #include <errno.h>

 static int forward_port;

 #undef max

 #define max(x,y) ((x) > (y) ? (x) : (y))

 static int

 listen_socket(int listen_port)

 {

 struct sockaddr_in addr;

 int lfd;

 int yes;

 lfd = socket(AF_INET, SOCK_STREAM, 0);

 if (lfd == -1) {

 perror("socket");

 return -1;

 }

 yes = 1;

 if (setsockopt(lfd, SOL_SOCKET, SO_REUSEADDR,

 &yes, sizeof(yes)) == -1) {

 perror("setsockopt");

 close(lfd);

 return -1;

 } Page 6/13

 memset(&addr, 0, sizeof(addr));

 addr.sin_port = htons(listen_port);

 addr.sin_family = AF_INET;

 if (bind(lfd, (struct sockaddr *) &addr, sizeof(addr)) == -1) {

 perror("bind");

 close(lfd);

 return -1;

 }

 printf("accepting connections on port %d\n", listen_port);

 listen(lfd, 10);

 return lfd;

 }

 static int

 connect_socket(int connect_port, char *address)

 {

 struct sockaddr_in addr;

 int cfd;

 cfd = socket(AF_INET, SOCK_STREAM, 0);

 if (cfd == -1) {

 perror("socket");

 return -1;

 }

 memset(&addr, 0, sizeof(addr));

 addr.sin_port = htons(connect_port);

 addr.sin_family = AF_INET;

 if (!inet_aton(address, (struct in_addr *) &addr.sin_addr.s_addr)) {

 fprintf(stderr, "inet_aton(): bad IP address format\n");

 close(cfd);

 return -1;

 }

 if (connect(cfd, (struct sockaddr *) &addr, sizeof(addr)) == -1) {

 perror("connect()");

 shutdown(cfd, SHUT_RDWR); Page 7/13

 close(cfd);

 return -1;

 }

 return cfd;

 }

 #define SHUT_FD1 do { \

 if (fd1 >= 0) { \

 shutdown(fd1, SHUT_RDWR); \

 close(fd1); \

 fd1 = -1; \

 } \

 } while (0)

 #define SHUT_FD2 do { \

 if (fd2 >= 0) { \

 shutdown(fd2, SHUT_RDWR); \

 close(fd2); \

 fd2 = -1; \

 } \

 } while (0)

 #define BUF_SIZE 1024

 int

 main(int argc, char *argv[])

 {

 int h;

 int fd1 = -1, fd2 = -1;

 char buf1[BUF_SIZE], buf2[BUF_SIZE];

 int buf1_avail = 0, buf1_written = 0;

 int buf2_avail = 0, buf2_written = 0;

 if (argc != 4) {

 fprintf(stderr, "Usage\n\tfwd <listen-port> "

 "<forward-to-port> <forward-to-ip-address>\n");

 exit(EXIT_FAILURE);

 } Page 8/13

 signal(SIGPIPE, SIG_IGN);

 forward_port = atoi(argv[2]);

 h = listen_socket(atoi(argv[1]));

 if (h == -1)

 exit(EXIT_FAILURE);

 for (;;) {

 int ready, nfds = 0;

 ssize_t nbytes;

 fd_set readfds, writefds, exceptfds;

 FD_ZERO(&readfds);

 FD_ZERO(&writefds);

 FD_ZERO(&exceptfds);

 FD_SET(h, &readfds);

 nfds = max(nfds, h);

 if (fd1 > 0 && buf1_avail < BUF_SIZE)

 FD_SET(fd1, &readfds);

 /* Note: nfds is updated below, when fd1 is added to

 exceptfds. */

 if (fd2 > 0 && buf2_avail < BUF_SIZE)

 FD_SET(fd2, &readfds);

 if (fd1 > 0 && buf2_avail - buf2_written > 0)

 FD_SET(fd1, &writefds);

 if (fd2 > 0 && buf1_avail - buf1_written > 0)

 FD_SET(fd2, &writefds);

 if (fd1 > 0) {

 FD_SET(fd1, &exceptfds);

 nfds = max(nfds, fd1);

 }

 if (fd2 > 0) {

 FD_SET(fd2, &exceptfds);

 nfds = max(nfds, fd2);

 }

 ready = select(nfds + 1, &readfds, &writefds, &exceptfds, NULL); Page 9/13

 if (ready == -1 && errno == EINTR)

 continue;

 if (ready == -1) {

 perror("select()");

 exit(EXIT_FAILURE);

 }

 if (FD_ISSET(h, &readfds)) {

 socklen_t addrlen;

 struct sockaddr_in client_addr;

 int fd;

 addrlen = sizeof(client_addr);

 memset(&client_addr, 0, addrlen);

 fd = accept(h, (struct sockaddr *) &client_addr, &addrlen);

 if (fd == -1) {

 perror("accept()");

 } else {

 SHUT_FD1;

 SHUT_FD2;

 buf1_avail = buf1_written = 0;

 buf2_avail = buf2_written = 0;

 fd1 = fd;

 fd2 = connect_socket(forward_port, argv[3]);

 if (fd2 == -1)

 SHUT_FD1;

 else

 printf("connect from %s\n",

 inet_ntoa(client_addr.sin_addr));

 /* Skip any events on the old, closed file

 descriptors. */

 continue;

 }

 }

 /* NB: read OOB data before normal reads */ Page 10/13

 if (fd1 > 0 && FD_ISSET(fd1, &exceptfds)) {

 char c;

 nbytes = recv(fd1, &c, 1, MSG_OOB);

 if (nbytes < 1)

 SHUT_FD1;

 else

 send(fd2, &c, 1, MSG_OOB);

 }

 if (fd2 > 0 && FD_ISSET(fd2, &exceptfds)) {

 char c;

 nbytes = recv(fd2, &c, 1, MSG_OOB);

 if (nbytes < 1)

 SHUT_FD2;

 else

 send(fd1, &c, 1, MSG_OOB);

 }

 if (fd1 > 0 && FD_ISSET(fd1, &readfds)) {

 nbytes = read(fd1, buf1 + buf1_avail,

 BUF_SIZE - buf1_avail);

 if (nbytes < 1)

 SHUT_FD1;

 else

 buf1_avail += nbytes;

 }

 if (fd2 > 0 && FD_ISSET(fd2, &readfds)) {

 nbytes = read(fd2, buf2 + buf2_avail,

 BUF_SIZE - buf2_avail);

 if (nbytes < 1)

 SHUT_FD2;

 else

 buf2_avail += nbytes;

 }

 if (fd1 > 0 && FD_ISSET(fd1, &writefds) && buf2_avail > 0) { Page 11/13

 nbytes = write(fd1, buf2 + buf2_written,

 buf2_avail - buf2_written);

 if (nbytes < 1)

 SHUT_FD1;

 else

 buf2_written += nbytes;

 }

 if (fd2 > 0 && FD_ISSET(fd2, &writefds) && buf1_avail > 0) {

 nbytes = write(fd2, buf1 + buf1_written,

 buf1_avail - buf1_written);

 if (nbytes < 1)

 SHUT_FD2;

 else

 buf1_written += nbytes;

 }

 /* Check if write data has caught read data */

 if (buf1_written == buf1_avail)

 buf1_written = buf1_avail = 0;

 if (buf2_written == buf2_avail)

 buf2_written = buf2_avail = 0;

 /* One side has closed the connection, keep

 writing to the other side until empty */

 if (fd1 < 0 && buf1_avail - buf1_written == 0)

 SHUT_FD2;

 if (fd2 < 0 && buf2_avail - buf2_written == 0)

 SHUT_FD1;

 }

 exit(EXIT_SUCCESS);

 }

 The above program properly forwards most kinds of TCP connections in?

 cluding OOB signal data transmitted by telnet servers. It handles the

 tricky problem of having data flow in both directions simultaneously.

 You might think it more efficient to use a fork(2) call and devote a Page 12/13

 thread to each stream. This becomes more tricky than you might sus?

 pect. Another idea is to set nonblocking I/O using fcntl(2). This

 also has its problems because you end up using inefficient timeouts.

 The program does not handle more than one simultaneous connection at a

 time, although it could easily be extended to do this with a linked

 list of buffers?one for each connection. At the moment, new connec?

 tions cause the current connection to be dropped.

SEE ALSO

 accept(2), connect(2), poll(2), read(2), recv(2), select(2), send(2),

 sigprocmask(2), write(2), epoll(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-04-11 SELECT_TUT(2)

Page 13/13

