
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'scripts.7' command

$ man scripts.7

SCRIPTS(7) SCRIPTS(7)

NAME

 scripts - How npm handles the "scripts" field

 Description

 The "scripts" property of your package.json file supports a number of

 built-in scripts and their preset life cycle events as well as arbi?

 trary scripts. These all can be executed by running npm run-script

 <stage> or npm run <stage> for short. Pre and post commands with match?

 ing names will be run for those as well (e.g. premyscript, myscript,

 postmyscript). Scripts from dependencies can be run with npm explore

 <pkg> -- npm run <stage>.

 Pre & Post Scripts

 To create "pre" or "post" scripts for any scripts defined in the

 "scripts" section of the package.json, simply create another script

 with a matching name and add "pre" or "post" to the beginning of them.

 {

 "scripts": {

 "precompress": "{{ executes BEFORE the `compress` script }}",

 "compress": "{{ run command to compress files }}",

 "postcompress": "{{ executes AFTER `compress` script }}"

 }

 }

 In this example npm run compress would execute these scripts as de? Page 1/10

 scribed.

 Life Cycle Scripts

 There are some special life cycle scripts that happen only in certain

 situations. These scripts happen in addition to the pre<event>,

 post<event>, and <event> scripts.

 ? prepare, prepublish, prepublishOnly, prepack, postpack, dependencies

 prepare (since npm@4.0.0)

 ? Runs any time before the package is packed, i.e. during npm publish

 and npm pack

 ? Runs BEFORE the package is packed

 ? Runs BEFORE the package is published

 ? Runs on local npm install without any arguments

 ? Run AFTER prepublish, but BEFORE prepublishOnly

 ? NOTE: If a package being installed through git contains a prepare

 script, its dependencies and devDependencies will be installed, and

 the prepare script will be run, before the package is packaged and

 installed.

 ? As of npm@7 these scripts run in the background. To see the output,

 run with: --foreground-scripts.

 prepublish (DEPRECATED)

 ? Does not run during npm publish, but does run during npm ci and npm

 install. See below for more info.

 prepublishOnly

 ? Runs BEFORE the package is prepared and packed, ONLY on npm publish.

 prepack

 ? Runs BEFORE a tarball is packed (on "npm pack", "npm publish", and

 when installing a git dependencies).

 ? NOTE: "npm run pack" is NOT the same as "npm pack". "npm run pack" is

 an arbitrary user defined script name, where as, "npm pack" is a CLI

 defined command.

 postpack

 ? Runs AFTER the tarball has been generated but before it is moved to

 its final destination (if at all, publish does not save the tarball Page 2/10

 locally)

 dependencies

 ? Runs AFTER any operations that modify the node_modules directory IF

 changes occurred.

 ? Does NOT run in global mode

 Prepare and Prepublish

 Deprecation Note: prepublish

 Since npm@1.1.71, the npm CLI has run the prepublish script for both

 npm publish and npm install, because it's a convenient way to prepare a

 package for use (some common use cases are described in the section be?

 low). It has also turned out to be, in practice, very confusing

 https://github.com/npm/npm/issues/10074. As of npm@4.0.0, a new event

 has been introduced, prepare, that preserves this existing behavior. A

 new event, prepublishOnly has been added as a transitional strategy to

 allow users to avoid the confusing behavior of existing npm versions

 and only run on npm publish (for instance, running the tests one last

 time to ensure they're in good shape).

 See https://github.com/npm/npm/issues/10074 for a much lengthier justi?

 fication, with further reading, for this change.

 Use Cases

 If you need to perform operations on your package before it is used, in

 a way that is not dependent on the operating system or architecture of

 the target system, use a prepublish script. This includes tasks such

 as:

 ? Compiling CoffeeScript source code into JavaScript.

 ? Creating minified versions of JavaScript source code.

 ? Fetching remote resources that your package will use.

 The advantage of doing these things at prepublish time is that they can

 be done once, in a single place, thus reducing complexity and variabil?

 ity. Additionally, this means that:

 ? You can depend on coffee-script as a devDependency, and thus your

 users don't need to have it installed.

 ? You don't need to include minifiers in your package, reducing the Page 3/10

 size for your users.

 ? You don't need to rely on your users having curl or wget or other

 system tools on the target machines.

 Dependencies

 The dependencies script is run any time an npm command causes changes

 to the node_modules directory. It is run AFTER the changes have been

 applied and the package.json and package-lock.json files have been up?

 dated.

 Life Cycle Operation Order

 npm help cache add

 ? prepare

 npm help ci

 ? preinstall

 ? install

 ? postinstall

 ? prepublish

 ? preprepare

 ? prepare

 ? postprepare These all run after the actual installation of modules

 into node_modules, in order, with no internal actions happening in

 between

 npm help diff

 ? prepare

 npm help install

 These also run when you run npm install -g <pkg-name>

 ? preinstall

 ? install

 ? postinstall

 ? prepublish

 ? preprepare

 ? prepare

 ? postprepare

 If there is a binding.gyp file in the root of your package and you Page 4/10

 haven't defined your own install or preinstall scripts, npm will de?

 fault the install command to compile using node-gyp via node-gyp re?

 build

 These are run from the scripts of <pkg-name>

 npm help pack

 ? prepack

 ? prepare

 ? postpack

 npm help publish

 ? prepublishOnly

 ? prepack

 ? prepare

 ? postpack

 ? publish

 ? postpublish

 prepare will not run during --dry-run

 npm help rebuild

 ? preinstall

 ? install

 ? postinstall

 ? prepare

 prepare is only run if the current directory is a symlink (e.g. with

 linked packages)

 npm help restart

 If there is a restart script defined, these events are run, otherwise

 stop and start are both run if present, including their pre and post

 iterations)

 ? prerestart

 ? restart

 ? postrestart

 npm run <user defined> /commands/npm-run-script

 ? pre<user-defined>

 ? <user-defined> Page 5/10

 ? post<user-defined>

 npm help start

 ? prestart

 ? start

 ? poststart

 If there is a server.js file in the root of your package, then npm will

 default the start command to node server.js. prestart and poststart

 will still run in this case.

 npm help stop

 ? prestop

 ? stop

 ? poststop

 npm help test

 ? pretest

 ? test

 ? posttest

 npm help version

 ? preversion

 ? version

 ? postversion

 A Note on a lack of npm help uninstall scripts

 While npm v6 had uninstall lifecycle scripts, npm v7 does not. Removal

 of a package can happen for a wide variety of reasons, and there's no

 clear way to currently give the script enough context to be useful.

 Reasons for a package removal include:

 ? a user directly uninstalled this package

 ? a user uninstalled a dependant package and so this dependency is be?

 ing uninstalled

 ? a user uninstalled a dependant package but another package also de?

 pends on this version

 ? this version has been merged as a duplicate with another version

 ? etc.

 Due to the lack of necessary context, uninstall lifecycle scripts are Page 6/10

 not implemented and will not function.

 User

 When npm is run as root, scripts are always run with the effective uid

 and gid of the working directory owner.

 Environment

 Package scripts run in an environment where many pieces of information

 are made available regarding the setup of npm and the current state of

 the process.

 path

 If you depend on modules that define executable scripts, like test

 suites, then those executables will be added to the PATH for executing

 the scripts. So, if your package.json has this:

 {

 "name" : "foo",

 "dependencies" : {

 "bar" : "0.1.x"

 },

 "scripts": {

 "start" : "bar ./test"

 }

 }

 then you could run npm start to execute the bar script, which is ex?

 ported into the node_modules/.bin directory on npm install.

 package.json vars

 The package.json fields are tacked onto the npm_package_ prefix. So,

 for instance, if you had {"name":"foo", "version":"1.2.5"} in your

 package.json file, then your package scripts would have the npm_pack?

 age_name environment variable set to "foo", and the npm_package_version

 set to "1.2.5". You can access these variables in your code with

 process.env.npm_package_name and process.env.npm_package_version, and

 so on for other fields.

 See package.json /configuring-npm/package-json for more on package con?

 figs. Page 7/10

 current lifecycle event

 Lastly, the npm_lifecycle_event environment variable is set to which?

 ever stage of the cycle is being executed. So, you could have a single

 script used for different parts of the process which switches based on

 what's currently happening.

 Objects are flattened following this format, so if you had

 {"scripts":{"install":"foo.js"}} in your package.json, then you'd see

 this in the script:

 process.env.npm_package_scripts_install === "foo.js"

 Examples

 For example, if your package.json contains this:

 {

 "scripts" : {

 "install" : "scripts/install.js",

 "postinstall" : "scripts/install.js",

 "uninstall" : "scripts/uninstall.js"

 }

 }

 then scripts/install.js will be called for the install and post-install

 stages of the lifecycle, and scripts/uninstall.js will be called when

 the package is uninstalled. Since scripts/install.js is running for

 two different phases, it would be wise in this case to look at the

 npm_lifecycle_event environment variable.

 If you want to run a make command, you can do so. This works just

 fine:

 {

 "scripts" : {

 "preinstall" : "./configure",

 "install" : "make && make install",

 "test" : "make test"

 }

 }

 Exiting Page 8/10

 Scripts are run by passing the line as a script argument to sh.

 If the script exits with a code other than 0, then this will abort the

 process.

 Note that these script files don't have to be Node.js or even Java?

 Script programs. They just have to be some kind of executable file.

 Best Practices

 ? Don't exit with a non-zero error code unless you really mean it. Ex?

 cept for uninstall scripts, this will cause the npm action to fail,

 and potentially be rolled back. If the failure is minor or only will

 prevent some optional features, then it's better to just print a

 warning and exit successfully.

 ? Try not to use scripts to do what npm can do for you. Read through

 package.json /configuring-npm/package-json to see all the things that

 you can specify and enable by simply describing your package appro?

 priately. In general, this will lead to a more robust and consistent

 state.

 ? Inspect the env to determine where to put things. For instance, if

 the npm_config_binroot environment variable is set to /home/user/bin,

 then don't try to install executables into /usr/local/bin. The user

 probably set it up that way for a reason.

 ? Don't prefix your script commands with "sudo". If root permissions

 are required for some reason, then it'll fail with that error, and

 the user will sudo the npm command in question.

 ? Don't use install. Use a .gyp file for compilation, and prepare for

 anything else. You should almost never have to explicitly set a pre?

 install or install script. If you are doing this, please consider if

 there is another option. The only valid use of install or preinstall

 scripts is for compilation which must be done on the target architec?

 ture.

 ? Scripts are run from the root of the package folder, regardless of

 what the current working directory is when npm is invoked. If you

 want your script to use different behavior based on what subdirectory

 you're in, you can use the INIT_CWD environment variable, which holds Page 9/10

 the full path you were in when you ran npm run.

 See Also

 ? npm help run-script

 ? package.json /configuring-npm/package-json

 ? npm help developers

 ? npm help install

 February 2023 SCRIPTS(7)

Page 10/10

