
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'scope.7' command

$ man scope.7

SCOPE(7) SCOPE(7)

NAME

 scope - Scoped packages

 Description

 All npm packages have a name. Some package names also have a scope. A

 scope follows the usual rules for package names (URL-safe characters,

 no leading dots or underscores). When used in package names, scopes are

 preceded by an @ symbol and followed by a slash, e.g.

 @somescope/somepackagename

 Scopes are a way of grouping related packages together, and also affect

 a few things about the way npm treats the package.

 Each npm user/organization has their own scope, and only you can add

 packages in your scope. This means you don't have to worry about some?

 one taking your package name ahead of you. Thus it is also a good way

 to signal official packages for organizations.

 Scoped packages can be published and installed as of npm@2 and are sup?

 ported by the primary npm registry. Unscoped packages can depend on

 scoped packages and vice versa. The npm client is backwards-compatible

 with unscoped registries, so it can be used to work with scoped and un?

 scoped registries at the same time.

 Installing scoped packages

 Scoped packages are installed to a sub-folder of the regular installa?

 tion folder, e.g. if your other packages are installed in node_mod? Page 1/4

 ules/packagename, scoped modules will be installed in node_modules/@my?

 org/packagename. The scope folder (@myorg) is simply the name of the

 scope preceded by an @ symbol, and can contain any number of scoped

 packages.

 A scoped package is installed by referencing it by name, preceded by an

 @ symbol, in npm install:

 npm install @myorg/mypackage

 Or in package.json:

 "dependencies": {

 "@myorg/mypackage": "^1.3.0"

 }

 Note that if the @ symbol is omitted, in either case, npm will instead

 attempt to install from GitHub; see npm help install.

 Requiring scoped packages

 Because scoped packages are installed into a scope folder, you have to

 include the name of the scope when requiring them in your code, e.g.

 require('@myorg/mypackage')

 There is nothing special about the way Node treats scope folders. This

 simply requires the mypackage module in the folder named @myorg.

 Publishing scoped packages

 Scoped packages can be published from the CLI as of npm@2 and can be

 published to any registry that supports them, including the primary npm

 registry.

 (As of 2015-04-19, and with npm 2.0 or better, the primary npm registry

 does support scoped packages.)

 If you wish, you may associate a scope with a registry; see below.

 Publishing public scoped packages to the primary npm registry

 Publishing to a scope, you have two options:

 ? Publishing to your user scope (example: @username/module)

 ? Publishing to an organization scope (example: @org/module)

 If publishing a public module to an organization scope, you must first

 either create an organization with the name of the scope that you'd

 like to publish to or be added to an existing organization with the ap? Page 2/4

 propriate permisssions. For example, if you'd like to publish to @org,

 you would need to create the org organization on npmjs.com prior to

 trying to publish.

 Scoped packages are not public by default. You will need to specify

 --access public with the initial npm publish command. This will pub?

 lish the package and set access to public as if you had run npm access

 public after publishing. You do not need to do this when publishing

 new versions of an existing scoped package.

 Publishing private scoped packages to the npm registry

 To publish a private scoped package to the npm registry, you must have

 an npm Private Modules https://docs.npmjs.com/private-modules/intro ac?

 count.

 You can then publish the module with npm publish or npm publish --ac?

 cess restricted, and it will be present in the npm registry, with re?

 stricted access. You can then change the access permissions, if de?

 sired, with npm access or on the npmjs.com website.

 Associating a scope with a registry

 Scopes can be associated with a separate registry. This allows you to

 seamlessly use a mix of packages from the primary npm registry and one

 or more private registries, such as GitHub Packages

 https://github.com/features/packages or the open source Verdaccio

 https://verdaccio.org project.

 You can associate a scope with a registry at login, e.g.

 npm login --registry=http://reg.example.com --scope=@myco

 Scopes have a many-to-one relationship with registries: one registry

 can host multiple scopes, but a scope only ever points to one registry.

 You can also associate a scope with a registry using npm config:

 npm config set @myco:registry http://reg.example.com

 Once a scope is associated with a registry, any npm install for a pack?

 age with that scope will request packages from that registry instead.

 Any npm publish for a package name that contains the scope will be pub?

 lished to that registry instead.

 See also Page 3/4

 ? npm help install

 ? npm help publish

 ? npm help access

 ? npm help registry

 February 2023 SCOPE(7)

Page 4/4

