
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'sched_setattr.2' command

$ man sched_setattr.2

SCHED_SETATTR(2) Linux Programmer's Manual SCHED_SETATTR(2)

NAME

 sched_setattr, sched_getattr - set and get scheduling policy and at?

 tributes

SYNOPSIS

 #include <sched.h>

 int sched_setattr(pid_t pid, struct sched_attr *attr,

 unsigned int flags);

 int sched_getattr(pid_t pid, struct sched_attr *attr,

 unsigned int size, unsigned int flags);

DESCRIPTION

 sched_setattr()

 The sched_setattr() system call sets the scheduling policy and associ?

 ated attributes for the thread whose ID is specified in pid. If pid

 equals zero, the scheduling policy and attributes of the calling thread

 will be set.

 Currently, Linux supports the following "normal" (i.e., non-real-time)

 scheduling policies as values that may be specified in policy:

 SCHED_OTHER the standard round-robin time-sharing policy;

 SCHED_BATCH for "batch" style execution of processes; and

 SCHED_IDLE for running very low priority background jobs.

 Various "real-time" policies are also supported, for special time-crit?

 ical applications that need precise control over the way in which Page 1/7

 runnable threads are selected for execution. For the rules governing

 when a process may use these policies, see sched(7). The real-time

 policies that may be specified in policy are:

 SCHED_FIFO a first-in, first-out policy; and

 SCHED_RR a round-robin policy.

 Linux also provides the following policy:

 SCHED_DEADLINE

 a deadline scheduling policy; see sched(7) for details.

 The attr argument is a pointer to a structure that defines the new

 scheduling policy and attributes for the specified thread. This struc?

 ture has the following form:

 struct sched_attr {

 u32 size; /* Size of this structure */

 u32 sched_policy; /* Policy (SCHED_*) */

 u64 sched_flags; /* Flags */

 s32 sched_nice; /* Nice value (SCHED_OTHER,

 SCHED_BATCH) */

 u32 sched_priority; /* Static priority (SCHED_FIFO,

 SCHED_RR) */

 /* Remaining fields are for SCHED_DEADLINE */

 u64 sched_runtime;

 u64 sched_deadline;

 u64 sched_period;

 };

 The fields of the sched_attr structure are as follows:

 size This field should be set to the size of the structure in bytes,

 as in sizeof(struct sched_attr). If the provided structure is

 smaller than the kernel structure, any additional fields are as?

 sumed to be '0'. If the provided structure is larger than the

 kernel structure, the kernel verifies that all additional fields

 are 0; if they are not, sched_setattr() fails with the error

 E2BIG and updates size to contain the size of the kernel struc?

 ture. Page 2/7

 The above behavior when the size of the user-space sched_attr

 structure does not match the size of the kernel structure allows

 for future extensibility of the interface. Malformed applica?

 tions that pass oversize structures won't break in the future if

 the size of the kernel sched_attr structure is increased. In

 the future, it could also allow applications that know about a

 larger user-space sched_attr structure to determine whether they

 are running on an older kernel that does not support the larger

 structure.

 sched_policy

 This field specifies the scheduling policy, as one of the

 SCHED_* values listed above.

 sched_flags

 This field contains zero or more of the following flags that are

 ORed together to control scheduling behavior:

 SCHED_FLAG_RESET_ON_FORK

 Children created by fork(2) do not inherit privileged

 scheduling policies. See sched(7) for details.

 SCHED_FLAG_RECLAIM (since Linux 4.13)

 This flag allows a SCHED_DEADLINE thread to reclaim band?

 width unused by other real-time threads.

 SCHED_FLAG_DL_OVERRUN (since Linux 4.16)

 This flag allows an application to get informed about

 run-time overruns in SCHED_DEADLINE threads. Such over?

 runs may be caused by (for example) coarse execution time

 accounting or incorrect parameter assignment. Notifica?

 tion takes the form of a SIGXCPU signal which is gener?

 ated on each overrun.

 This SIGXCPU signal is process-directed (see signal(7))

 rather than thread-directed. This is probably a bug. On

 the one hand, sched_setattr() is being used to set a per-

 thread attribute. On the other hand, if the process-di?

 rected signal is delivered to a thread inside the process Page 3/7

 other than the one that had a run-time overrun, the ap?

 plication has no way of knowing which thread overran.

 sched_nice

 This field specifies the nice value to be set when specifying

 sched_policy as SCHED_OTHER or SCHED_BATCH. The nice value is a

 number in the range -20 (high priority) to +19 (low priority);

 see sched(7).

 sched_priority

 This field specifies the static priority to be set when specify?

 ing sched_policy as SCHED_FIFO or SCHED_RR. The allowed range

 of priorities for these policies can be determined using

 sched_get_priority_min(2) and sched_get_priority_max(2). For

 other policies, this field must be specified as 0.

 sched_runtime

 This field specifies the "Runtime" parameter for deadline sched?

 uling. The value is expressed in nanoseconds. This field, and

 the next two fields, are used only for SCHED_DEADLINE schedul?

 ing; for further details, see sched(7).

 sched_deadline

 This field specifies the "Deadline" parameter for deadline

 scheduling. The value is expressed in nanoseconds.

 sched_period

 This field specifies the "Period" parameter for deadline sched?

 uling. The value is expressed in nanoseconds.

 The flags argument is provided to allow for future extensions to the

 interface; in the current implementation it must be specified as 0.

 sched_getattr()

 The sched_getattr() system call fetches the scheduling policy and the

 associated attributes for the thread whose ID is specified in pid. If

 pid equals zero, the scheduling policy and attributes of the calling

 thread will be retrieved.

 The size argument should be set to the size of the sched_attr structure

 as known to user space. The value must be at least as large as the Page 4/7

 size of the initially published sched_attr structure, or the call fails

 with the error EINVAL.

 The retrieved scheduling attributes are placed in the fields of the

 sched_attr structure pointed to by attr. The kernel sets attr.size to

 the size of its sched_attr structure.

 If the caller-provided attr buffer is larger than the kernel's

 sched_attr structure, the additional bytes in the user-space structure

 are not touched. If the caller-provided structure is smaller than the

 kernel sched_attr structure, the kernel will silently not return any

 values which would be stored outside the provided space. As with

 sched_setattr(), these semantics allow for future extensibility of the

 interface.

 The flags argument is provided to allow for future extensions to the

 interface; in the current implementation it must be specified as 0.

RETURN VALUE

 On success, sched_setattr() and sched_getattr() return 0. On error, -1

 is returned, and errno is set to indicate the cause of the error.

ERRORS

 sched_getattr() and sched_setattr() can both fail for the following

 reasons:

 EINVAL attr is NULL; or pid is negative; or flags is not zero.

 ESRCH The thread whose ID is pid could not be found.

 In addition, sched_getattr() can fail for the following reasons:

 E2BIG The buffer specified by size and attr is too small.

 EINVAL size is invalid; that is, it is smaller than the initial version

 of the sched_attr structure (48 bytes) or larger than the system

 page size.

 In addition, sched_setattr() can fail for the following reasons:

 E2BIG The buffer specified by size and attr is larger than the kernel

 structure, and one or more of the excess bytes is nonzero.

 EBUSY SCHED_DEADLINE admission control failure, see sched(7).

 EINVAL attr.sched_policy is not one of the recognized policies;

 attr.sched_flags contains a flag other than SCHED_FLAG_RE? Page 5/7

 SET_ON_FORK; or attr.sched_priority is invalid; or

 attr.sched_policy is SCHED_DEADLINE and the deadline scheduling

 parameters in attr are invalid.

 EPERM The caller does not have appropriate privileges.

 EPERM The CPU affinity mask of the thread specified by pid does not

 include all CPUs in the system (see sched_setaffinity(2)).

VERSIONS

 These system calls first appeared in Linux 3.14.

CONFORMING TO

 These system calls are nonstandard Linux extensions.

NOTES

 sched_setattr() provides a superset of the functionality of

 sched_setscheduler(2), sched_setparam(2), nice(2), and (other than the

 ability to set the priority of all processes belonging to a specified

 user or all processes in a specified group) setpriority(2). Analo?

 gously, sched_getattr() provides a superset of the functionality of

 sched_getscheduler(2), sched_getparam(2), and (partially) getprior?

 ity(2).

BUGS

 In Linux versions up to 3.15, sched_setattr() failed with the error

 EFAULT instead of E2BIG for the case described in ERRORS.

 In Linux versions up to 5.3, sched_getattr() failed with the error EF?

 BIG if the in-kernel sched_attr structure was larger than the size

 passed by user space.

SEE ALSO

 chrt(1), nice(2), sched_get_priority_max(2), sched_get_priority_min(2),

 sched_getaffinity(2), sched_getparam(2), sched_getscheduler(2),

 sched_rr_get_interval(2), sched_setaffinity(2), sched_setparam(2),

 sched_setscheduler(2), sched_yield(2), setpriority(2),

 pthread_getschedparam(3), pthread_setschedparam(3),

 pthread_setschedprio(3), capabilities(7), cpuset(7), sched(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A Page 6/7

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-11-01 SCHED_SETATTR(2)

Page 7/7

