
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'ruby.1' command

$ man ruby.1

RUBY(1) Ruby Programmer's Reference Guide RUBY(1)

NAME

 ruby ? Interpreted object-oriented scripting language

SYNOPSIS

 ruby [--copyright] [--version] [-SUacdlnpswvy] [-0[octal]] [-C directory]

 [-E external[:internal]] [-F[pattern]] [-I directory] [-K[c]]

 [-T[level]] [-W[level]] [-e command] [-i[extension]] [-r library]

 [-x[directory]] [--{enable|disable}-FEATURE] [--dump=target]

 [--verbose] [--] [program_file] [argument ...]

DESCRIPTION

 Ruby is an interpreted scripting language for quick and easy object-ori?

 ented programming. It has many features to process text files and to do

 system management tasks (like in Perl). It is simple, straight-forward,

 and extensible.

 If you want a language for easy object-oriented programming, or you don't

 like the Perl ugliness, or you do like the concept of LISP, but don't

 like too many parentheses, Ruby might be your language of choice.

FEATURES

 Ruby's features are as follows:

 Interpretive

 Ruby is an interpreted language, so you don't have to recompile

 programs written in Ruby to execute them.

 Variables have no type (dynamic typing) Page 1/12

 Variables in Ruby can contain data of any type. You don't have

 to worry about variable typing. Consequently, it has a weaker

 compile time check.

 No declaration needed

 You can use variables in your Ruby programs without any declara?

 tions. Variable names denote their scope - global, class, in?

 stance, or local.

 Simple syntax

 Ruby has a simple syntax influenced slightly from Eiffel.

 No user-level memory management

 Ruby has automatic memory management. Objects no longer refer?

 enced from anywhere are automatically collected by the garbage

 collector built into the interpreter.

 Everything is an object

 Ruby is a purely object-oriented language, and was so since its

 creation. Even such basic data as integers are seen as objects.

 Class, inheritance, and methods

 Being an object-oriented language, Ruby naturally has basic fea?

 tures like classes, inheritance, and methods.

 Singleton methods

 Ruby has the ability to define methods for certain objects. For

 example, you can define a press-button action for certain widget

 by defining a singleton method for the button. Or, you can make

 up your own prototype based object system using singleton meth?

 ods, if you want to.

 Mix-in by modules

 Ruby intentionally does not have the multiple inheritance as it

 is a source of confusion. Instead, Ruby has the ability to share

 implementations across the inheritance tree. This is often

 called a ?Mix-in?.

 Iterators

 Ruby has iterators for loop abstraction.

 Closures Page 2/12

 In Ruby, you can objectify the procedure.

 Text processing and regular expressions

 Ruby has a bunch of text processing features like in Perl.

 M17N, character set independent

 Ruby supports multilingualized programming. Easy to process texts

 written in many different natural languages and encoded in many

 different character encodings, without dependence on Unicode.

 Bignums

 With built-in bignums, you can for example calculate facto?

 rial(400).

 Reflection and domain specific languages

 Class is also an instance of the Class class. Definition of

 classes and methods is an expression just as 1+1 is. So your pro?

 grams can even write and modify programs. Thus you can write

 your application in your own programming language on top of Ruby.

 Exception handling

 As in Java(tm).

 Direct access to the OS

 Ruby can use most UNIX system calls, often used in system pro?

 gramming.

 Dynamic loading

 On most UNIX systems, you can load object files into the Ruby in?

 terpreter on-the-fly.

 Rich libraries

 In addition to the ?builtin libraries? and ?standard libraries?

 that are bundled with Ruby, a vast amount of third-party li?

 braries (?gems?) are available via the package management system

 called ?RubyGems?, namely the gem(1) command. Visit RubyGems.org

 (https://rubygems.org/) to find the gems you need, and explore

 GitHub (https://github.com/) to see how they are being developed

 and used.

OPTIONS

 The Ruby interpreter accepts the following command-line options Page 3/12

 (switches). They are quite similar to those of perl(1).

 --copyright Prints the copyright notice, and quits immediately without

 running any script.

 --version Prints the version of the Ruby interpreter, and quits im?

 mediately without running any script.

 -0[octal] (The digit ?zero?.) Specifies the input record separator

 ($/) as an octal number. If no digit is given, the null

 character is taken as the separator. Other switches may

 follow the digits. -00 turns Ruby into paragraph mode.

 -0777 makes Ruby read whole file at once as a single

 string since there is no legal character with that value.

 -C directory

 -X directory Causes Ruby to switch to the directory.

 -E external[:internal]

 --encoding external[:internal]

 Specifies the default value(s) for external encodings and

 internal encoding. Values should be separated with colon

 (:).

 You can omit the one for internal encodings, then the

 value (Encoding.default_internal) will be nil.

 --external-encoding=encoding

 --internal-encoding=encoding

 Specify the default external or internal character encod?

 ing

 -F pattern Specifies input field separator ($;).

 -I directory Used to tell Ruby where to load the library scripts. Di?

 rectory path will be added to the load-path variable ($:).

 -K kcode Specifies KANJI (Japanese) encoding. The default value for

 script encodings (__ENCODING__) and external encodings

 (Encoding.default_external) will be the specified one.

 kcode can be one of

 e EUC-JP

 s Windows-31J (CP932) Page 4/12

 u UTF-8

 n ASCII-8BIT (BINARY)

 -S Makes Ruby use the PATH environment variable to search for

 script, unless its name begins with a slash. This is used

 to emulate #! on machines that don't support it, in the

 following manner:

 #! /usr/local/bin/ruby

 # This line makes the next one a comment in Ruby \

 exec /usr/local/bin/ruby -S $0 $*

 On some systems $0 does not always contain the full path?

 name, so you need the -S switch to tell Ruby to search for

 the script if necessary (to handle embedded spaces and

 such). A better construct than $* would be ${1+"$@"}, but

 it does not work if the script is being interpreted by

 csh(1).

 -T[level=1] Turns on taint checks at the specified level (default 1).

 -U Sets the default value for internal encodings

 (Encoding.default_internal) to UTF-8.

 -W[level=2] Turns on verbose mode at the specified level without

 printing the version message at the beginning. The level

 can be;

 0 Verbose mode is "silence". It sets the

 $VERBOSE to nil.

 1 Verbose mode is "medium". It sets the

 $VERBOSE to false.

 2 (default) Verbose mode is "verbose". It sets the

 $VERBOSE to true. -W2 is same as -w

 -a Turns on auto-split mode when used with -n or -p. In

 auto-split mode, Ruby executes

 $F = $_.split

 at beginning of each loop.

 -c Causes Ruby to check the syntax of the script and exit

 without executing. If there are no syntax errors, Ruby Page 5/12

 will print ?Syntax OK? to the standard output.

 -d

 --debug Turns on debug mode. $DEBUG will be set to true.

 -e command Specifies script from command-line while telling Ruby not

 to search the rest of the arguments for a script file

 name.

 -h

 --help Prints a summary of the options.

 -i extension Specifies in-place-edit mode. The extension, if speci?

 fied, is added to old file name to make a backup copy.

 For example:

 % echo matz > /tmp/junk

 % cat /tmp/junk

 matz

 % ruby -p -i.bak -e '$_.upcase!' /tmp/junk

 % cat /tmp/junk

 MATZ

 % cat /tmp/junk.bak

 matz

 -l (The lowercase letter ?ell?.) Enables automatic line-end?

 ing processing, which means to firstly set $\ to the value

 of $/, and secondly chops every line read using chomp!.

 -n Causes Ruby to assume the following loop around your

 script, which makes it iterate over file name arguments

 somewhat like sed -n or awk.

 while gets

 ...

 end

 -p Acts mostly same as -n switch, but print the value of

 variable $_ at the each end of the loop. For example:

 % echo matz | ruby -p -e '$_.tr! "a-z", "A-Z"'

 MATZ

 -r library Causes Ruby to load the library using require. It is use? Page 6/12

 ful when using -n or -p.

 -s Enables some switch parsing for switches after script name

 but before any file name arguments (or before a --). Any

 switches found there are removed from ARGV and set the

 corresponding variable in the script. For example:

 #! /usr/local/bin/ruby -s

 # prints "true" if invoked with `-xyz' switch.

 print "true\n" if $xyz

 -v Enables verbose mode. Ruby will print its version at the

 beginning and set the variable $VERBOSE to true. Some

 methods print extra messages if this variable is true. If

 this switch is given, and no other switches are present,

 Ruby quits after printing its version.

 -w Enables verbose mode without printing version message at

 the beginning. It sets the $VERBOSE variable to true.

 -x[directory] Tells Ruby that the script is embedded in a message.

 Leading garbage will be discarded until the first line

 that starts with ?#!? and contains the string, ?ruby?.

 Any meaningful switches on that line will be applied. The

 end of the script must be specified with either EOF, ^D

 (control-D), ^Z (control-Z), or the reserved word __END__.

 If the directory name is specified, Ruby will switch to

 that directory before executing script.

 -y

 --yydebug DO NOT USE.

 Turns on compiler debug mode. Ruby will print a bunch of

 internal state messages during compilation. Only specify

 this switch you are going to debug the Ruby interpreter.

 --disable-FEATURE

 --enable-FEATURE

 Disables (or enables) the specified FEATURE.

 --disable-gems

 --enable-gems Disables (or enables) RubyGems li? Page 7/12

 braries. By default, Ruby will load

 the latest version of each installed

 gem. The Gem constant is true if

 RubyGems is enabled, false if other?

 wise.

 --disable-rubyopt

 --enable-rubyopt Ignores (or considers) the RUBYOPT en?

 vironment variable. By default, Ruby

 considers the variable.

 --disable-all

 --enable-all Disables (or enables) all features.

 --dump=target Dump some information.

 Prints the specified target. target can be one of;

 version version description same as --version

 usage brief usage message same as -h

 help Show long help message same as --help

 syntax check of syntax same as -c --yydebug

 yydebug compiler debug mode, same as --yydebug

 Only specify this switch if you are going to

 debug the Ruby interpreter.

 parsetree

 parsetree_with_comment AST nodes tree

 Only specify this switch if you are going to

 debug the Ruby interpreter.

 insns disassembled instructions

 Only specify this switch if you are going to

 debug the Ruby interpreter.

 --verbose Enables verbose mode without printing version message at

 the beginning. It sets the $VERBOSE variable to true. If

 this switch is given, and no script arguments (script file

 or -e options) are present, Ruby quits immediately.

ENVIRONMENT

 RUBYLIB A colon-separated list of directories that are added to Ruby's Page 8/12

 library load path ($:). Directories from this environment

 variable are searched before the standard load path is

 searched.

 e.g.:

 RUBYLIB="$HOME/lib/ruby:$HOME/lib/rubyext"

 RUBYOPT Additional Ruby options.

 e.g.

 RUBYOPT="-w -Ke"

 Note that RUBYOPT can contain only -d, -E, -I, -K, -r, -T, -U,

 -v, -w, -W, --debug, --disable-FEATURE and --enable-FEATURE.

 RUBYPATH A colon-separated list of directories that Ruby searches for

 Ruby programs when the -S flag is specified. This variable

 precedes the PATH environment variable.

 RUBYSHELL The path to the system shell command. This environment vari?

 able is enabled for only mswin32, mingw32, and OS/2 platforms.

 If this variable is not defined, Ruby refers to COMSPEC.

 PATH Ruby refers to the PATH environment variable on calling Ker?

 nel#system.

 And Ruby depends on some RubyGems related environment variables unless

 RubyGems is disabled. See the help of gem(1) as below.

 % gem help

GC ENVIRONMENT

 The Ruby garbage collector (GC) tracks objects in fixed-sized slots, but

 each object may have auxiliary memory allocations handled by the malloc

 family of C standard library calls (malloc(3), calloc(3), and

 realloc(3)). In this documentatation, the "heap" refers to the Ruby ob?

 ject heap of fixed-sized slots, while "malloc" refers to auxiliary allo?

 cations commonly referred to as the "process heap". Thus there are at

 least two possible ways to trigger GC:

 1 Reaching the object limit.

 2 Reaching the malloc limit.

 In Ruby 2.1, the generational GC was introduced and the limits are di?

 vided into young and old generations, providing two additional ways to Page 9/12

 trigger a GC:

 3 Reaching the old object limit.

 4 Reaching the old malloc limit.

 There are currently 4 possible areas where the GC may be tuned by the

 following 11 environment variables:

 RUBY_GC_HEAP_INIT_SLOTS Initial allocation slots. Intro?

 duced in Ruby 2.1, default: 10000.

 RUBY_GC_HEAP_FREE_SLOTS Prepare at least this amount of

 slots after GC. Allocate this

 number slots if there are not

 enough slots. Introduced in Ruby

 2.1, default: 4096

 RUBY_GC_HEAP_GROWTH_FACTOR Increase allocation rate of heap

 slots by this factor. Introduced

 in Ruby 2.1, default: 1.8, mini?

 mum: 1.0 (no growth)

 RUBY_GC_HEAP_GROWTH_MAX_SLOTS Allocation rate is limited to this

 number of slots, preventing exces?

 sive allocation due to

 RUBY_GC_HEAP_GROWTH_FACTOR. In?

 troduced in Ruby 2.1, default: 0

 (no limit)

 RUBY_GC_HEAP_OLDOBJECT_LIMIT_FACTOR Perform a full GC when the number

 of old objects is more than R * N,

 where R is this factor and N is

 the number of old objects after

 the last full GC. Introduced in

 Ruby 2.1.1, default: 2.0

 RUBY_GC_MALLOC_LIMIT The initial limit of young genera?

 tion allocation from the malloc-

 family. GC will start when this

 limit is reached. Default: 16MB

 RUBY_GC_MALLOC_LIMIT_MAX The maximum limit of young genera? Page 10/12

 tion allocation from malloc before

 GC starts. Prevents excessive

 malloc growth due to RUBY_GC_MAL?

 LOC_LIMIT_GROWTH_FACTOR. Intro?

 duced in Ruby 2.1, default: 32MB.

 RUBY_GC_MALLOC_LIMIT_GROWTH_FACTOR Increases the limit of young gen?

 eration malloc calls, reducing GC

 frequency but increasing malloc

 growth until RUBY_GC_MAL?

 LOC_LIMIT_MAX is reached. Intro?

 duced in Ruby 2.1, default: 1.4,

 minimum: 1.0 (no growth)

 RUBY_GC_OLDMALLOC_LIMIT The initial limit of old genera?

 tion allocation from malloc, a

 full GC will start when this limit

 is reached. Introduced in Ruby

 2.1, default: 16MB

 RUBY_GC_OLDMALLOC_LIMIT_MAX The maximum limit of old genera?

 tion allocation from malloc before

 a full GC starts. Prevents exces?

 sive malloc growth due to

 RUBY_GC_OLDMAL?

 LOC_LIMIT_GROWTH_FACTOR. Intro?

 duced in Ruby 2.1, default: 128MB

 RUBY_GC_OLDMALLOC_LIMIT_GROWTH_FACTOR Increases the limit of old genera?

 tion malloc allocation, reducing

 full GC frequency but increasing

 malloc growth until RUBY_GC_OLD?

 MALLOC_LIMIT_MAX is reached. In?

 troduced in Ruby 2.1, default:

 1.2, minimum: 1.0 (no growth)

STACK SIZE ENVIRONMENT

 Stack size environment variables are implementation-dependent and subject Page 11/12

 to change with different versions of Ruby. The VM stack is used for

 pure-Ruby code and managed by the virtual machine. Machine stack is used

 by the operating system and its usage is dependent on C extensions as

 well as C compiler options. Using lower values for these may allow ap?

 plications to keep more Fibers or Threads running; but increases the

 chance of SystemStackError exceptions and segmentation faults (SIGSEGV).

 These environment variables are available since Ruby 2.0.0. All values

 are specified in bytes.

 RUBY_THREAD_VM_STACK_SIZE VM stack size used at thread creation.

 default: 131072 (32-bit CPU) or 262144

 (64-bit)

 RUBY_THREAD_MACHINE_STACK_SIZE Machine stack size used at thread cre?

 ation. default: 524288 or 1048575

 RUBY_FIBER_VM_STACK_SIZE VM stack size used at fiber creation.

 default: 65536 or 131072

 RUBY_FIBER_MACHINE_STACK_SIZE Machine stack size used at fiber cre?

 ation. default: 262144 or 524288

SEE ALSO

 https://www.ruby-lang.org/ The official web site.

 https://www.ruby-toolbox.com/ Comprehensive catalog of Ruby libraries.

REPORTING BUGS

 ? Security vulnerabilities should be reported via an email to

 security@ruby-lang.org. Reported problems will be published after

 being fixed.

 ? Other bugs and feature requests can be reported via the Ruby Issue

 Tracking System (https://bugs.ruby-lang.org/). Do not report security

 vulnerabilities via this system because it publishes the vulnerabili?

 ties immediately.

AUTHORS

 Ruby is designed and implemented by Yukihiro Matsumoto <matz@netlab.jp>.

 See ?https://bugs.ruby-lang.org/projects/ruby/wiki/Contributors? for con?

 tributors to Ruby.

UNIX April 14, 2018 UNIX Page 12/12

