
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'rtnetlink.7' command

$ man rtnetlink.7

RTNETLINK(7) Linux Programmer's Manual RTNETLINK(7)

NAME

 rtnetlink - Linux IPv4 routing socket

SYNOPSIS

 #include <asm/types.h>

 #include <linux/netlink.h>

 #include <linux/rtnetlink.h>

 #include <sys/socket.h>

 rtnetlink_socket = socket(AF_NETLINK, int socket_type, NETLINK_ROUTE);

DESCRIPTION

 Rtnetlink allows the kernel's routing tables to be read and altered.

 It is used within the kernel to communicate between various subsystems,

 though this usage is not documented here, and for communication with

 user-space programs. Network routes, IP addresses, link parameters,

 neighbor setups, queueing disciplines, traffic classes and packet clas?

 sifiers may all be controlled through NETLINK_ROUTE sockets. It is

 based on netlink messages; see netlink(7) for more information.

 Routing attributes

 Some rtnetlink messages have optional attributes after the initial

 header:

 struct rtattr {

 unsigned short rta_len; /* Length of option */

 unsigned short rta_type; /* Type of option */ Page 1/10

 /* Data follows */

 };

 These attributes should be manipulated using only the RTA_* macros or

 libnetlink, see rtnetlink(3).

 Messages

 Rtnetlink consists of these message types (in addition to standard

 netlink messages):

 RTM_NEWLINK, RTM_DELLINK, RTM_GETLINK

 Create, remove, or get information about a specific network in?

 terface. These messages contain an ifinfomsg structure followed

 by a series of rtattr structures.

 struct ifinfomsg {

 unsigned char ifi_family; /* AF_UNSPEC */

 unsigned short ifi_type; /* Device type */

 int ifi_index; /* Interface index */

 unsigned int ifi_flags; /* Device flags */

 unsigned int ifi_change; /* change mask */

 };

 ifi_flags contains the device flags, see netdevice(7); ifi_index

 is the unique interface index (since Linux 3.7, it is possible

 to feed a nonzero value with the RTM_NEWLINK message, thus cre?

 ating a link with the given ifindex); ifi_change is reserved for

 future use and should be always set to 0xFFFFFFFF.

 Routing attributes

 rta_type Value type Description

 ???

 IFLA_UNSPEC - unspecified

 IFLA_ADDRESS hardware address interface L2 address

 IFLA_BROADCAST hardware address L2 broadcast address

 IFLA_IFNAME asciiz string Device name

 IFLA_MTU unsigned int MTU of the device

 IFLA_LINK int Link type

 IFLA_QDISC asciiz string Queueing discipline Page 2/10

 IFLA_STATS see below Interface Statistics

 The value type for IFLA_STATS is struct rtnl_link_stats (struct

 net_device_stats in Linux 2.4 and earlier).

 RTM_NEWADDR, RTM_DELADDR, RTM_GETADDR

 Add, remove, or receive information about an IP address associ?

 ated with an interface. In Linux 2.2, an interface can carry

 multiple IP addresses, this replaces the alias device concept in

 2.0. In Linux 2.2, these messages support IPv4 and IPv6 ad?

 dresses. They contain an ifaddrmsg structure, optionally fol?

 lowed by rtattr routing attributes.

 struct ifaddrmsg {

 unsigned char ifa_family; /* Address type */

 unsigned char ifa_prefixlen; /* Prefixlength of address */

 unsigned char ifa_flags; /* Address flags */

 unsigned char ifa_scope; /* Address scope */

 unsigned int ifa_index; /* Interface index */

 };

 ifa_family is the address family type (currently AF_INET or

 AF_INET6), ifa_prefixlen is the length of the address mask of

 the address if defined for the family (like for IPv4), ifa_scope

 is the address scope, ifa_index is the interface index of the

 interface the address is associated with. ifa_flags is a flag

 word of IFA_F_SECONDARY for secondary address (old alias inter?

 face), IFA_F_PERMANENT for a permanent address set by the user

 and other undocumented flags.

 Attributes

 rta_type Value type Description

 ???

 IFA_UNSPEC - unspecified

 IFA_ADDRESS raw protocol address interface address

 IFA_LOCAL raw protocol address local address

 IFA_LABEL asciiz string name of the interface

 IFA_BROADCAST raw protocol address broadcast address Page 3/10

 IFA_ANYCAST raw protocol address anycast address

 IFA_CACHEINFO struct ifa_cacheinfo Address information

 RTM_NEWROUTE, RTM_DELROUTE, RTM_GETROUTE

 Create, remove, or receive information about a network route.

 These messages contain an rtmsg structure with an optional se?

 quence of rtattr structures following. For RTM_GETROUTE, set?

 ting rtm_dst_len and rtm_src_len to 0 means you get all entries

 for the specified routing table. For the other fields, except

 rtm_table and rtm_protocol, 0 is the wildcard.

 struct rtmsg {

 unsigned char rtm_family; /* Address family of route */

 unsigned char rtm_dst_len; /* Length of destination */

 unsigned char rtm_src_len; /* Length of source */

 unsigned char rtm_tos; /* TOS filter */

 unsigned char rtm_table; /* Routing table ID;

 see RTA_TABLE below */

 unsigned char rtm_protocol; /* Routing protocol; see below */

 unsigned char rtm_scope; /* See below */

 unsigned char rtm_type; /* See below */

 unsigned int rtm_flags;

 };

 rtm_type Route type

 ???

 RTN_UNSPEC unknown route

 RTN_UNICAST a gateway or direct route

 RTN_LOCAL a local interface route

 RTN_BROADCAST a local broadcast route (sent as a

 broadcast)

 RTN_ANYCAST a local broadcast route (sent as a uni?

 cast)

 RTN_MULTICAST a multicast route

 RTN_BLACKHOLE a packet dropping route

 RTN_UNREACHABLE an unreachable destination Page 4/10

 RTN_PROHIBIT a packet rejection route

 RTN_THROW continue routing lookup in another table

 RTN_NAT a network address translation rule

 RTN_XRESOLVE refer to an external resolver (not im?

 plemented)

 rtm_protocol Route origin

 ???

 RTPROT_UNSPEC unknown

 RTPROT_REDIRECT by an ICMP redirect (cur?

 rently unused)

 RTPROT_KERNEL by the kernel

 RTPROT_BOOT during boot

 RTPROT_STATIC by the administrator

 Values larger than RTPROT_STATIC are not interpreted by the ker?

 nel, they are just for user information. They may be used to

 tag the source of a routing information or to distinguish be?

 tween multiple routing daemons. See <linux/rtnetlink.h> for the

 routing daemon identifiers which are already assigned.

 rtm_scope is the distance to the destination:

 RT_SCOPE_UNIVERSE global route

 RT_SCOPE_SITE interior route in the lo?

 cal autonomous system

 RT_SCOPE_LINK route on this link

 RT_SCOPE_HOST route on the local host

 RT_SCOPE_NOWHERE destination doesn't exist

 The values between RT_SCOPE_UNIVERSE and RT_SCOPE_SITE are

 available to the user.

 The rtm_flags have the following meanings:

 RTM_F_NOTIFY if the route changes, notify the user via

 rtnetlink

 RTM_F_CLONED route is cloned from another route

 RTM_F_EQUALIZE a multipath equalizer (not yet implemented)

 rtm_table specifies the routing table Page 5/10

 RT_TABLE_UNSPEC an unspecified routing table

 RT_TABLE_DEFAULT the default table

 RT_TABLE_MAIN the main table

 RT_TABLE_LOCAL the local table

 The user may assign arbitrary values between RT_TABLE_UNSPEC and

 RT_TABLE_DEFAULT.

 Attributes

 rta_type Value type Description

 ??

 RTA_UNSPEC - ignored

 RTA_DST protocol address Route destination address

 RTA_SRC protocol address Route source address

 RTA_IIF int Input interface index

 RTA_OIF int Output interface index

 RTA_GATEWAY protocol address The gateway of the route

 RTA_PRIORITY int Priority of route

 RTA_PREFSRC protocol address Preferred source address

 RTA_METRICS int Route metric

 RTA_MULTIPATH Multipath nexthop data br

 (see below).

 RTA_PROTOINFO No longer used

 RTA_FLOW int Route realm

 RTA_CACHEINFO struct rta_cacheinfo (see linux/rtnetlink.h)

 RTA_SESSION No longer used

 RTA_MP_ALGO No longer used

 RTA_TABLE int Routing table ID; if set,

 rtm_table is ignored

 RTA_MARK int

 RTA_MFC_STATS struct rta_mfc_stats (see linux/rtnetlink.h)

 RTA_VIA struct rtvia Gateway in different AF

 (see below)

 RTA_NEWDST protocol address Change packet destination

 address Page 6/10

 RTA_PREF char RFC4191 IPv6 router pref?

 erence (see below)

 RTA_ENCAP_TYPE short Encapsulation type for

 lwtunnels (see below)

 RTA_ENCAP Defined by RTA_ENCAP_TYPE

 RTA_EXPIRES int Expire time for IPv6

 routes (in seconds)

 RTA_MULTIPATH contains several packed instances of struct rtnex?

 thop together with nested RTAs (RTA_GATEWAY):

 struct rtnexthop {

 unsigned short rtnh_len; /* Length of struct + length

 of RTAs */

 unsigned char rtnh_flags; /* Flags (see

 linux/rtnetlink.h) */

 unsigned char rtnh_hops; /* Nexthop priority */

 int rtnh_ifindex; /* Interface index for this

 nexthop */

 }

 There exist a bunch of RTNH_* macros similar to RTA_* and NL?

 HDR_* macros useful to handle these structures.

 struct rtvia {

 unsigned short rtvia_family;

 unsigned char rtvia_addr[0];

 };

 rtvia_addr is the address, rtvia_family is its family type.

 RTA_PREF may contain values ICMPV6_ROUTER_PREF_LOW,

 ICMPV6_ROUTER_PREF_MEDIUM, and ICMPV6_ROUTER_PREF_HIGH defined

 incw <linux/icmpv6.h>.

 RTA_ENCAP_TYPE may contain values LWTUNNEL_ENCAP_MPLS, LWTUN?

 NEL_ENCAP_IP, LWTUNNEL_ENCAP_ILA, or LWTUNNEL_ENCAP_IP6 defined

 in <linux/lwtunnel.h>.

 Fill these values in!

 RTM_NEWNEIGH, RTM_DELNEIGH, RTM_GETNEIGH Page 7/10

 Add, remove, or receive information about a neighbor table entry

 (e.g., an ARP entry). The message contains an ndmsg structure.

 struct ndmsg {

 unsigned char ndm_family;

 int ndm_ifindex; /* Interface index */

 __u16 ndm_state; /* State */

 __u8 ndm_flags; /* Flags */

 __u8 ndm_type;

 };

 struct nda_cacheinfo {

 __u32 ndm_confirmed;

 __u32 ndm_used;

 __u32 ndm_updated;

 __u32 ndm_refcnt;

 };

 ndm_state is a bit mask of the following states:

 NUD_INCOMPLETE a currently resolving cache entry

 NUD_REACHABLE a confirmed working cache entry

 NUD_STALE an expired cache entry

 NUD_DELAY an entry waiting for a timer

 NUD_PROBE a cache entry that is currently reprobed

 NUD_FAILED an invalid cache entry

 NUD_NOARP a device with no destination cache

 NUD_PERMANENT a static entry

 Valid ndm_flags are:

 NTF_PROXY a proxy arp entry

 NTF_ROUTER an IPv6 router

 The rtattr struct has the following meanings for the rta_type

 field:

 NDA_UNSPEC unknown type

 NDA_DST a neighbor cache n/w layer destination address

 NDA_LLADDR a neighbor cache link layer address

 NDA_CACHEINFO cache statistics Page 8/10

 If the rta_type field is NDA_CACHEINFO, then a struct nda_cache?

 info header follows.

 RTM_NEWRULE, RTM_DELRULE, RTM_GETRULE

 Add, delete, or retrieve a routing rule. Carries a struct rtmsg

 RTM_NEWQDISC, RTM_DELQDISC, RTM_GETQDISC

 Add, remove, or get a queueing discipline. The message contains

 a struct tcmsg and may be followed by a series of attributes.

 struct tcmsg {

 unsigned char tcm_family;

 int tcm_ifindex; /* interface index */

 __u32 tcm_handle; /* Qdisc handle */

 __u32 tcm_parent; /* Parent qdisc */

 __u32 tcm_info;

 };

 Attributes

 rta_type Value type Description

 ??

 TCA_UNSPEC - unspecified

 TCA_KIND asciiz string Name of queueing discipline

 TCA_OPTIONS byte sequence Qdisc-specific options follow

 TCA_STATS struct tc_stats Qdisc statistics

 TCA_XSTATS qdisc-specific Module-specific statistics

 TCA_RATE struct tc_estimator Rate limit

 In addition, various other qdisc-module-specific attributes are

 allowed. For more information see the appropriate include

 files.

 RTM_NEWTCLASS, RTM_DELTCLASS, RTM_GETTCLASS

 Add, remove, or get a traffic class. These messages contain a

 struct tcmsg as described above.

 RTM_NEWTFILTER, RTM_DELTFILTER, RTM_GETTFILTER

 Add, remove, or receive information about a traffic filter.

 These messages contain a struct tcmsg as described above.

VERSIONS Page 9/10

 rtnetlink is a new feature of Linux 2.2.

BUGS

 This manual page is incomplete.

SEE ALSO

 cmsg(3), rtnetlink(3), ip(7), netlink(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-06-09 RTNETLINK(7)

Page 10/10

