
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'rsyncd.conf.5' command

$ man rsyncd.conf.5

rsyncd.conf(5)                   User Commands                  rsyncd.conf(5)

NAME

       rsyncd.conf - configuration file for rsync in daemon mode

SYNOPSIS

       rsyncd.conf

DESCRIPTION

       The  rsyncd.conf  file is the runtime configuration file for rsync when

       run as an rsync daemon.

       The rsyncd.conf  file  controls  authentication,  access,  logging  and

       available modules.

FILE FORMAT

       The  file  consists of modules and parameters. A module begins with the

       name of the module in square brackets and continues until the next mod?

       ule begins.  Modules contain parameters of the form name = value.

       The  file is line-based -- that is, each newline-terminated line repre?

       sents either a comment, a module name or a parameter.

       Only the first equals sign in a parameter  is  significant.  Whitespace

       before  or  after the first equals sign is discarded. Leading, trailing

       and internal whitespace in module and parameter  names  is  irrelevant.

       Leading  and trailing whitespace in a parameter value is discarded. In?

       ternal whitespace within a parameter value is retained verbatim.

       Any line beginning with a hash (#) is ignored, as are lines  containing

       only  whitespace.  (If  a hash occurs after anything other than leading Page 1/33



       whitespace, it is considered a part of the line's content.)

       Any line ending in a \ is "continued" on the next line in the customary

       UNIX fashion.

       The  values  following  the  equals sign in parameters are all either a

       string (no quotes needed) or a boolean, which may be given  as  yes/no,

       0/1  or  true/false.  Case is not significant in boolean values, but is

       preserved in string values.

LAUNCHING THE RSYNC DAEMON

       The rsync daemon is launched  by  specifying  the  --daemon  option  to

       rsync.

       The  daemon must run with root privileges if you wish to use chroot, to

       bind to a port numbered under 1024 (as is the default 873), or  to  set

       file  ownership.   Otherwise,  it must just have permission to read and

       write the appropriate data, log, and lock files.

       You can launch it either via inetd, as a stand-alone daemon, or from an

       rsync  client  via a remote shell.  If run as a stand-alone daemon then

       just run the command "rsync --daemon" from a suitable startup script.

       When run via inetd you should add a line like this to /etc/services:

           rsync           873/tcp

       and a single line something like this to /etc/inetd.conf:

           rsync   stream  tcp     nowait  root   /usr/bin/rsync rsyncd --daemon

       Replace "/usr/bin/rsync" with the path to  where  you  have  rsync  in?

       stalled  on your system.  You will then need to send inetd a HUP signal

       to tell it to reread its config file.

       Note that you should not send the rsync daemon a HUP signal to force it

       to reread the rsyncd.conf file. The file is re-read on each client con?

       nection.

GLOBAL PARAMETERS

       The first parameters in the file (before a  [module]  header)  are  the

       global  parameters.  Rsync also allows for the use of a "[global]" mod?

       ule name to indicate the start of one or more global-parameter sections

       (the name must be lower case).

       You  may  also  include any module parameters in the global part of the Page 2/33



       config file in which case the supplied value will override the  default

       for that parameter.

       You may use references to environment variables in the values of param?

       eters.  String parameters will have %VAR% references expanded  as  late

       as  possible  (when  the string is first used in the program), allowing

       for the use of variables that rsync sets at connection  time,  such  as

       RSYNC_USER_NAME.   Non-string  parameters (such as true/false settings)

       are expanded when read from the config file.  If a  variable  does  not

       exist in the environment, or if a sequence of characters is not a valid

       reference (such as an un-paired percent sign), the raw  characters  are

       passed  through  unchanged.  This helps with backward compatibility and

       safety (e.g. expanding a non-existent %VAR% to an  empty  string  in  a

       path  could  result in a very unsafe path).  The safest way to insert a

       literal % into a value is to use %%.

       motd file

              This parameter allows you to specify a "message of the  day"  to

              display  to  clients on each connect. This usually contains site

              information and any legal notices. The default is no motd  file.

              This  can  be  overridden by the --dparam=motdfile=FILE command-

              line option when starting the daemon.

       pid file

              This parameter tells the rsync daemon to write its process ID to

              that  file.  The rsync keeps the file locked so that it can know

              when it is safe to overwrite an existing file.

              The filename can be overridden by the --dparam=pidfile=FILE com?

              mand-line option when starting the daemon.

       port   You  can  override the default port the daemon will listen on by

              specifying this value (defaults to 873).  This is ignored if the

              daemon  is  being  run by inetd, and is superseded by the --port

              command-line option.

       address

              You can override the default IP address the daemon  will  listen

              on  by  specifying this value.  This is ignored if the daemon is Page 3/33



              being run by inetd, and is superseded by the --address  command-

              line option.

       socket options

              This  parameter  can  provide endless fun for people who like to

              tune their systems to the utmost degree. You can set  all  sorts

              of  socket options which may make transfers faster (or slower!).

              Read the man page for the setsockopt() system call  for  details

              on  some  of  the  options you may be able to set. By default no

              special socket options are set.   These  settings  can  also  be

              specified via the --sockopts command-line option.

       listen backlog

              You  can override the default backlog value when the daemon lis?

              tens for connections.  It defaults to 5.

MODULE PARAMETERS

       After the global parameters you should define a number of modules, each

       module  exports  a  directory  tree as a symbolic name. Modules are ex?

       ported by specifying a module name in square brackets [module] followed

       by  the  parameters  for that module.  The module name cannot contain a

       slash or a closing square bracket.  If the  name  contains  whitespace,

       each  internal  sequence  of  whitespace  will be changed into a single

       space, while leading or trailing whitespace will be  discarded.   Also,

       the  name  cannot  be "global" as that exact name indicates that global

       parameters follow (see above).

       As with GLOBAL PARAMETERS, you may use references to environment  vari?

       ables  in  the values of parameters.  See the GLOBAL PARAMETERS section

       for more details.

       comment

              This parameter specifies a description string that is  displayed

              next  to the module name when clients obtain a list of available

              modules. The default is no comment.

       path   This parameter specifies the directory in the daemon's  filesys?

              tem to make available in this module.  You must specify this pa?

              rameter for each module in rsyncd.conf. Page 4/33



              You may base the path's value off of an environment variable  by

              surrounding  the variable name with percent signs.  You can even

              reference a variable that is set by rsync  when  the  user  con?

              nects.   For example, this would use the authorizing user's name

              in the path:

                  path = /home/%RSYNC_USER_NAME%

              It is fine if the path includes internal spaces -- they will  be

              retained  verbatim (which means that you shouldn't try to escape

              them).  If your final directory has a trailing space  (and  this

              is  somehow  not  something  you wish to fix), append a trailing

              slash to the path to avoid losing the trailing whitespace.

       use chroot

              If "use chroot" is true, the rsync daemon  will  chroot  to  the

              "path"  before starting the file transfer with the client.  This

              has the advantage of extra protection against possible implemen?

              tation security holes, but it has the disadvantages of requiring

              super-user privileges, of not  being  able  to  follow  symbolic

              links  that are either absolute or outside of the new root path,

              and of complicating the preservation of users and groups by name

              (see below).

              As  an  additional  safety feature, you can specify a dot-dir in

              the module's "path" to  indicate  the  point  where  the  chroot

              should  occur.   This  allows  rsync  to  run in a chroot with a

              non-"/" path for the top of the transfer hierarchy.  Doing  this

              guards  against unintended library loading (since those absolute

              paths will not be inside the transfer hierarchy unless you  have

              used  an  unwise pathname), and lets you setup libraries for the

              chroot that are outside of the transfer.  For example,  specify?

              ing  "/var/rsync/./module1"  will chroot to the "/var/rsync" di?

              rectory and set the inside-chroot path to  "/module1".   If  you

              had  omitted  the  dot-dir, the chroot would have used the whole

              path, and the inside-chroot path would have been "/".

              When both "use chroot" and "daemon chroot" are false, OR the in? Page 5/33



              side-chroot  path  of  "use  chroot" is not "/", rsync will: (1)

              munge symlinks by default for security reasons (see "munge  sym?

              links"  for  a  way to turn this off, but only if you trust your

              users), (2) substitute leading slashes in  absolute  paths  with

              the  module's path (so that options such as --backup-dir, --com?

              pare-dest, etc. interpret an absolute path as rooted in the mod?

              ule's  "path" dir), and (3) trim ".." path elements from args if

              rsync believes they would escape the module hierarchy.  The  de?

              fault  for  "use chroot" is true, and is the safer choice (espe?

              cially if the module is not read-only).

              When this parameter is enabled and the "name converter"  parame?

              ter  is not set, the "numeric ids" parameter will default to be?

              ing enabled (disabling name lookups).  This means  that  if  you

              manually  setup name-lookup libraries in your chroot (instead of

              using a name converter) that you  need  to  explicitly  set  nu?

              meric ids = false for rsync to do name lookups.

              If you copy library resources into the module's chroot area, you

              should protect them through your OS's normal user/group  or  ACL

              settings  (to prevent the rsync module's user from being able to

              change them), and then hide them from the user's view  via  "ex?

              clude"  (see how in the discussion of that parameter).  However,

              it's easier and safer to setup a name converter.

       daemon chroot

              This parameter specifies a path to which the daemon will  chroot

              before  beginning  communication with clients. Module paths (and

              any "use chroot" settings) will then be  related  to  this  one.

              This lets you choose if you want the whole daemon to be chrooted

              (with this setting), just the transfers  to  be  chrooted  (with

              "use  chroot"),  or both.  Keep in mind that the "daemon chroot"

              area may need various OS/lib/etc files installed  to  allow  the

              daemon  to function.  By default the daemon runs without any ch?

              rooting.

       proxy protocol Page 6/33



              When this parameter is enabled, all  incoming  connections  must

              start  with  a V1 or V2 proxy protocol header.  If the header is

              not found, the connection is closed.

              Setting this to true requires a proxy server to  forward  source

              IP information to rsync, allowing you to log proper IP/host info

              and make use of client-oriented IP restrictions.  The default of

              false  means  that  the  IP  information comes directly from the

              socket's metadata.  If rsync is not behind a proxy, this  should

              be disabled.

              CAUTION: using this option can be dangerous if you do not ensure

              that only the proxy is allowed to connect to the rsync port.  If

              any non-proxied connections are allowed through, the client will

              be able to use a modified rsync to spoof any remote  IP  address

              that  they  desire.  You can lock this down using something like

              iptables -uid-owner root rules (for  strict  localhost  access),

              various  firewall  rules, or you can require password authoriza?

              tion so that any spoofing by users will not grant extra access.

              This setting is global.  If you need  some  modules  to  require

              this  and not others, then you will need to setup multiple rsync

              daemon processes on different ports.

       name converter

              This parameter lets you specify a program that will  be  run  by

              the  rsync daemon to do user & group conversions between names &

              ids.  This script is started prior to any  chroot  being  setup,

              and  runs  as  the daemon user (not the transfer user).  You can

              specify a fully qualified pathname or a program name that is  on

              the $PATH.

              The  program can be used to do normal user & group lookups with?

              out having to put any extra files into the chroot  area  of  the

              module or you can do customized conversions.

              The  nameconvert  program  has  access to all of the environment

              variables that are described in the  section  on  pre-xfer exec.

              This is useful if you want to customize the conversion using in? Page 7/33



              formation about the module and/or the copy request.

              There is a sample python script in the support dir named  "name?

              convert"  that implements the normal user & group lookups.  Feel

              free to customize it or just use it as documentation  to  imple?

              ment your own.

       numeric ids

              Enabling this parameter disables the mapping of users and groups

              by name for the current daemon module.  This prevents the daemon

              from  trying  to load any user/group-related files or libraries.

              This enabling makes the transfer behave as  if  the  client  had

              passed  the --numeric-ids command-line option.  By default, this

              parameter is enabled for chroot modules and disabled for non-ch?

              root  modules.   Also keep in mind that uid/gid preservation re?

              quires the module to be running as root (see "uid") or for "fake

              super" to be configured.

              A  chroot-enabled  module  should not have this parameter set to

              false unless you're using a "name converter" program  or  you've

              taken  steps  to  ensure  that  the module has the necessary re?

              sources it needs to translate names and that it is not  possible

              for a user to change those resources.

       munge symlinks

              This  parameter  tells  rsync to modify all symlinks in the same

              way as the (non-daemon-affecting) --munge-links command-line op?

              tion (using a method described below).  This should help protect

              your files  from  user  trickery  when  your  daemon  module  is

              writable.   The default is disabled when "use chroot" is on with

              an inside-chroot path of "/", OR if "daemon chroot" is on,  oth?

              erwise it is enabled.

              If you disable this parameter on a daemon that is not read-only,

              there are tricks that a user can play with uploaded symlinks  to

              access  daemon-excluded  items (if your module has any), and, if

              "use chroot" is off, rsync can even be tricked into  showing  or

              changing  data that is outside the module's path (as access-per? Page 8/33



              missions allow).

              The way rsync disables the use of symlinks is to prefix each one

              with the string "/rsyncd-munged/".  This prevents the links from

              being used as long as that directory does not exist.  When  this

              parameter is enabled, rsync will refuse to run if that path is a

              directory or a symlink to a directory.  When  using  the  "munge

              symlinks"  parameter  in a chroot area that has an inside-chroot

              path of "/", you should add  "/rsyncd-munged/"  to  the  exclude

              setting for the module so that a user can't try to create it.

              Note:   rsync  makes  no attempt to verify that any pre-existing

              symlinks in the module's hierarchy are as safe as you want  them

              to  be  (unless,  of course, it just copied in the whole hierar?

              chy).  If you setup an rsync daemon on a new area or locally add

              symlinks,  you  can  manually  protect  your symlinks from being

              abused by prefixing "/rsyncd-munged/" to the start of every sym?

              link's  value.   There is a perl script in the support directory

              of the source code named "munge-symlinks" that can  be  used  to

              add or remove this prefix from your symlinks.

              When  this  parameter  is disabled on a writable module and "use

              chroot" is off (or the inside-chroot path is not "/"),  incoming

              symlinks  will be modified to drop a leading slash and to remove

              ".." path elements that rsync believes will allow a  symlink  to

              escape  the  module's  hierarchy.  There are tricky ways to work

              around this, though, so you had better trust your users  if  you

              choose this combination of parameters.

       charset

              This  specifies  the name of the character set in which the mod?

              ule's filenames are stored.  If the client uses an  --iconv  op?

              tion,  the  daemon will use the value of the "charset" parameter

              regardless of the character  set  the  client  actually  passed.

              This allows the daemon to support charset conversion in a chroot

              module without extra files in the chroot area, and also  ensures

              that  name-translation  is  done in a consistent manner.  If the Page 9/33



              "charset" parameter is not set, the --iconv option  is  refused,

              just as if "iconv" had been specified via "refuse options".

              If  you wish to force users to always use --iconv for a particu?

              lar module, add "no-iconv" to the  "refuse  options"  parameter.

              Keep  in  mind  that this will restrict access to your module to

              very new rsync clients.

       max connections

              This parameter allows you to specify the maximum number  of  si?

              multaneous  connections  you will allow.  Any clients connecting

              when the maximum has been reached will receive a message telling

              them  to  try later.  The default is 0, which means no limit.  A

              negative value disables the module.  See also  the  "lock  file"

              parameter.

       log file

              When  the "log file" parameter is set to a non-empty string, the

              rsync daemon will log messages to the indicated file rather than

              using  syslog.   This is particularly useful on systems (such as

              AIX) where syslog() doesn't work  for  chrooted  programs.   The

              file  is  opened  before  chroot()  is called, allowing it to be

              placed outside the transfer.  If this value is set on a per-mod?

              ule basis instead of globally, the global log will still contain

              any authorization failures or config-file error messages.

              If the daemon fails to open the specified  file,  it  will  fall

              back  to  using  syslog  and  output an error about the failure.

              (Note that the failure to open the specified log file used to be

              a fatal error.)

              This  setting  can be overridden by using the --log-file=FILE or

              --dparam=logfile=FILE command-line options.   The  former  over?

              rides  all  the log-file parameters of the daemon and all module

              settings.  The latter sets the daemon's log file and the default

              for  all the modules, which still allows modules to override the

              default setting.

       syslog facility Page 10/33



              This parameter allows you to specify the syslog facility name to

              use when logging messages from the rsync daemon. You may use any

              standard syslog facility name which is defined on  your  system.

              Common  names  are auth, authpriv, cron, daemon, ftp, kern, lpr,

              mail, news, security, syslog, user, uucp,  local0,  local1,  lo?

              cal2, local3, local4, local5, local6 and local7.  The default is

              daemon.  This setting has no effect if the "log file" setting is

              a  non-empty  string (either set in the per-modules settings, or

              inherited from the global settings).

       syslog tag

              This parameter allows you to specify the syslog tag to use  when

              logging messages from the rsync daemon. The default is "rsyncd".

              This setting has no effect if the "log file" setting is  a  non-

              empty  string (either set in the per-modules settings, or inher?

              ited from the global settings).

              For example, if you wanted each authenticated user's name to  be

              included in the syslog tag, you could do something like this:

                  syslog tag = rsyncd.%RSYNC_USER_NAME%

       max verbosity

              This  parameter allows you to control the maximum amount of ver?

              bose information that you'll allow the daemon to generate (since

              the information goes into the log file). The default is 1, which

              allows the client to request one level of verbosity.

              This also affects the user's ability to request higher levels of

              --info and --debug logging.  If the max value is 2, then no info

              and/or debug value that is higher than what would be set by  -vv

              will  be  honored by the daemon in its logging.  To see how high

              of a verbosity  level  you  need  to  accept  for  a  particular

              info/debug  level,  refer  to  rsync --info=help and rsync --de?

              bug=help.  For instance, it takes max-verbosity 4 to be able  to

              output debug TIME2 and FLIST3.

       lock file

              This  parameter  specifies  the  file to use to support the "max Page 11/33



              connections" parameter. The rsync daemon uses record locking  on

              this  file  to  ensure that the max connections limit is not ex?

              ceeded for the modules sharing the lock file.   The  default  is

              /var/run/rsyncd.lock.

       read only

              This parameter determines whether clients will be able to upload

              files or not. If "read only" is true then any attempted  uploads

              will fail. If "read only" is false then uploads will be possible

              if file permissions on the daemon side allow them.  The  default

              is for all modules to be read only.

              Note  that  "auth users" can override this setting on a per-user

              basis.

       write only

              This parameter determines whether clients will be able to  down?

              load  files  or  not. If "write only" is true then any attempted

              downloads will fail. If "write only"  is  false  then  downloads

              will  be  possible  if file permissions on the daemon side allow

              them.  The default is for this parameter to be disabled.

              Helpful hint: you probably want to  specify  "refuse  options  =

              delete" for a write-only module.

       open noatime

              When  set to True, this parameter tells the rsync daemon to open

              files with the O_NOATIME flag (on systems that  support  it)  to

              avoid  changing  the  access  time  of  the files that are being

              transferred.  If your OS does not  support  the  O_NOATIME  flag

              then  rsync  will  silently  ignore this option.  Note also that

              some filesystems are mounted to avoid updating the atime on read

              access even without the O_NOATIME flag being set.

              When  set  to  False,  this parameters ensures that files on the

              server are not opened with O_NOATIME.

              When set to Unset (the default) the user  controls  the  setting

              via --open-noatime.

       list   This parameter determines whether this module is listed when the Page 12/33



              client asks for a listing of available modules.  In addition, if

              this is false, the daemon will pretend the module does not exist

              when a client denied by "hosts allow" or "hosts  deny"  attempts

              to  access  it.   Realize  that  if "reverse lookup" is disabled

              globally but enabled  for  the  module,  the  resulting  reverse

              lookup  to  a potentially client-controlled DNS server may still

              reveal to the client that it hit an existing  module.   The  de?

              fault is for modules to be listable.

       uid    This  parameter  specifies  the  user  name or user ID that file

              transfers to and from that module should take place as when  the

              daemon was run as root.  In combination with the "gid" parameter

              this determines what file permissions are available. The default

              when  run  by a super-user is to switch to the system's "nobody"

              user.  The default for a non-super-user is to not try to  change

              the user.  See also the "gid" parameter.

              The  RSYNC_USER_NAME environment variable may be used to request

              that rsync run as the authorizing user.   For  example,  if  you

              want  a  rsync to run as the same user that was received for the

              rsync authentication, this setup is useful:

                  uid = %RSYNC_USER_NAME%

                  gid = *

       gid    This parameter specifies one or more group names/IDs  that  will

              be  used  when  accessing the module.  The first one will be the

              default group, and any extra ones be set as supplemental groups.

              You  may  also specify a "*" as the first gid in the list, which

              will be replaced by all the normal  groups  for  the  transfer's

              user  (see  "uid").   The default when run by a super-user is to

              switch to your OS's "nobody" (or perhaps "nogroup")  group  with

              no other supplementary groups.  The default for a non-super-user

              is to not change any group attributes (and indeed, your  OS  may

              not  allow  a  non-super-user  to try to change their group set?

              tings).

              The specified list is normally split into tokens based on spaces Page 13/33



              and  commas.  However, if the list starts with a comma, then the

              list is only split on commas, which allows a group name to  con?

              tain a space.  In either case any leading and/or trailing white?

              space is removed from the tokens and empty tokens are ignored.

       daemon uid

              This parameter specifies a uid under which the daemon will  run.

              The  daemon usually runs as user root, and when this is left un?

              set the user is left unchanged. See also the "uid" parameter.

       daemon gid

              This parameter specifies a gid under which the daemon will  run.

              The daemon usually runs as group root, and when this is left un?

              set, the group is left unchanged. See also the "gid" parameter.

       fake super

              Setting "fake super = yes" for a module causes the  daemon  side

              to  behave  as  if the --fake-super command-line option had been

              specified.  This allows the full attributes  of  a  file  to  be

              stored  without  having  to  have the daemon actually running as

              root.

       filter The daemon has its own filter chain that determines  what  files

              it  will  let  the client access.  This chain is not sent to the

              client and is independent of any filters  the  client  may  have

              specified.   Files  excluded by the daemon filter chain (daemon-

              excluded files) are treated as non-existent if the client  tries

              to  pull  them,  are skipped with an error message if the client

              tries to push them (triggering exit  code  23),  and  are  never

              deleted  from the module.  You can use daemon filters to prevent

              clients from downloading or tampering with  private  administra?

              tive  files,  such  as files you may add to support uid/gid name

              translations.

              The daemon filter chain is built  from  the  "filter",  "include

              from",  "include",  "exclude from", and "exclude" parameters, in

              that order of priority.  Anchored patterns are anchored  at  the

              root of the module.  To prevent access to an entire subtree, for Page 14/33



              example, "/secret", you must exclude everything in the  subtree;

              the  easiest  way  to do this is with a triple-star pattern like

              "/secret/***".

              The "filter" parameter takes a space-separated  list  of  daemon

              filter  rules,  though it is smart enough to know not to split a

              token at an internal space in a rule  (e.g.  "- /foo - /bar"  is

              parsed  as  two  rules).  You may specify one or more merge-file

              rules using the normal syntax.  Only one "filter" parameter  can

              apply to a given module in the config file, so put all the rules

              you want in a single parameter.  Note that per-directory  merge-

              file  rules  do  not provide as much protection as global rules,

              but they can be used to  make  --delete  work  better  during  a

              client  download  operation  if  the per-dir merge files are in?

              cluded in the transfer and the  client  requests  that  they  be

              used.

       exclude

              This  parameter  takes  a space-separated list of daemon exclude

              patterns.  As with the client --exclude option, patterns can  be

              qualified  with  "-"  or  "+" to explicitly indicate exclude/in?

              clude.  Only one "exclude" parameter can apply to a  given  mod?

              ule.   See  the  "filter" parameter for a description of how ex?

              cluded files affect the daemon.

       include

              Use an "include" to override the effects of the "exclude" param?

              eter.  Only one "include" parameter can apply to a given module.

              See the "filter" parameter for a  description  of  how  excluded

              files affect the daemon.

       exclude from

              This  parameter  specifies the name of a file on the daemon that

              contains daemon exclude patterns, one per line.  Only  one  "ex?

              clude  from"  parameter can apply to a given module; if you have

              multiple exclude-from files, you can specify  them  as  a  merge

              file  in the "filter" parameter.  See the "filter" parameter for Page 15/33



              a description of how excluded files affect the daemon.

       include from

              Analogue of "exclude from" for a file  of  daemon  include  pat?

              terns.   Only  one "include from" parameter can apply to a given

              module.  See the "filter" parameter for a description of how ex?

              cluded files affect the daemon.

       incoming chmod

              This  parameter  allows  you to specify a set of comma-separated

              chmod strings that will affect the permissions of  all  incoming

              files  (files  that  are  being  received by the daemon).  These

              changes happen after all other permission calculations, and this

              will  even  override destination-default and/or existing permis?

              sions when the client does not specify  --perms.   See  the  de?

              scription  of  the --chmod rsync option and the chmod(1) manpage

              for information on the format of this string.

       outgoing chmod

              This parameter allows you to specify a  set  of  comma-separated

              chmod  strings  that will affect the permissions of all outgoing

              files (files that are being sent out from  the  daemon).   These

              changes  happen  first, making the sent permissions appear to be

              different than those stored in the filesystem itself.   For  in?

              stance,  you could disable group write permissions on the server

              while having it appear to be on to the  clients.   See  the  de?

              scription  of  the --chmod rsync option and the chmod(1) manpage

              for information on the format of this string.

       auth users

              This parameter specifies a comma and/or space-separated list  of

              authorization  rules.   In its simplest form, you list the user?

              names that will be allowed to connect to this module. The  user?

              names  do  not  need to exist on the local system. The rules may

              contain shell wildcard characters that will be  matched  against

              the username provided by the client for authentication. If "auth

              users" is set then the client will be  challenged  to  supply  a Page 16/33



              username  and password to connect to the module. A challenge re?

              sponse authentication protocol is used for  this  exchange.  The

              plain text usernames and passwords are stored in the file speci?

              fied by the "secrets file" parameter. The  default  is  for  all

              users  to  be able to connect without a password (this is called

              "anonymous rsync").

              In addition to username  matching,  you  can  specify  groupname

              matching  via  a '@' prefix.  When using groupname matching, the

              authenticating username must be a real user on the system, or it

              will be assumed to be a member of no groups.  For example, spec?

              ifying "@rsync" will match the authenticating user if the  named

              user is a member of the rsync group.

              Finally,  options  may  be specified after a colon (:).  The op?

              tions allow you to "deny" a user or a group, set the  access  to

              "ro"  (read-only), or set the access to "rw" (read/write).  Set?

              ting an auth-rule-specific ro/rw setting overrides the  module's

              "read only" setting.

              Be  sure  to  put  the  rules  in  the order you want them to be

              matched, because the checking stops at the first  matching  user

              or  group, and that is the only auth that is checked.  For exam?

              ple:

                  auth users = joe:deny @guest:deny admin:rw @rsync:ro susan joe sam

              In the above rule, user joe will  be  denied  access  no  matter

              what.   Any user that is in the group "guest" is also denied ac?

              cess.  The user "admin" gets access in read/write mode, but only

              if  the  admin  user  is not in group "guest" (because the admin

              user-matching rule would never be reached  if  the  user  is  in

              group "guest").  Any other user who is in group "rsync" will get

              read-only access.  Finally, users susan, joe, and  sam  get  the

              ro/rw  setting  of the module, but only if the user didn't match

              an earlier group-matching rule.

              If you need to specify a user or group name with a space in  it,

              start  your  list  with a comma to indicate that the list should Page 17/33



              only be split on commas (though leading and trailing  whitespace

              will  also be removed, and empty entries are just ignored).  For

              example:

                  auth users = , joe:deny, @Some Group:deny, admin:rw, @RO Group:ro

              See the description of the secrets file for  how  you  can  have

              per-user  passwords as well as per-group passwords.  It also ex?

              plains how a user can authenticate using their user password  or

              (when  applicable)  a  group password, depending on what rule is

              being authenticated.

              See also the section entitled "USING RSYNC-DAEMON FEATURES VIA A

              REMOTE SHELL CONNECTION" in rsync(1) for information on how han?

              dle an rsyncd.conf-level username that differs from the  remote-

              shell-level  username when using a remote shell to connect to an

              rsync daemon.

       secrets file

              This parameter specifies the name of a file  that  contains  the

              username:password  and/or @groupname:password pairs used for au?

              thenticating this module. This file is  only  consulted  if  the

              "auth users" parameter is specified.  The file is line-based and

              contains one name:password pair per line.  Any line has  a  hash

              (#) as the very first character on the line is considered a com?

              ment and is skipped.  The passwords can contain  any  characters

              but  be  warned  that many operating systems limit the length of

              passwords that can be typed at the client end, so you  may  find

              that passwords longer than 8 characters don't work.

              The  use of group-specific lines are only relevant when the mod?

              ule is being authorized  using  a  matching  "@groupname"  rule.

              When  that  happens, the user can be authorized via either their

              "username:password" line or the "@groupname:password"  line  for

              the group that triggered the authentication.

              It  is  up  to you what kind of password entries you want to in?

              clude, either users, groups, or both.  The use of group rules in

              "auth  users" does not require that you specify a group password Page 18/33



              if you do not want to use shared passwords.

              There is no default for the "secrets file" parameter,  you  must

              choose a name (such as /etc/rsyncd.secrets).  The file must nor?

              mally not be readable by "other"; see "strict  modes".   If  the

              file  is  not  found or is rejected, no logins for a "user auth"

              module will be possible.

       strict modes

              This parameter determines whether or not the permissions on  the

              secrets  file  will be checked.  If "strict modes" is true, then

              the secrets file must not be readable by any user ID other  than

              the  one  that  the  rsync  daemon is running under.  If "strict

              modes" is false, the check is not  performed.   The  default  is

              true.   This parameter was added to accommodate rsync running on

              the Windows operating system.

       hosts allow

              This parameter allows you to specify a  list  of  comma-  and/or

              whitespace-separated  patterns  that  are matched against a con?

              necting client's hostname and IP address.  If none of  the  pat?

              terns match, then the connection is rejected.

              Each pattern can be in one of six forms:

              o      a  dotted decimal IPv4 address of the form a.b.c.d, or an

                     IPv6 address of the form a:b:c::d:e:f. In this  case  the

                     incoming machine's IP address must match exactly.

              o      an  address/mask in the form ipaddr/n where ipaddr is the

                     IP address and n is the number of one bits  in  the  net?

                     mask.  All IP addresses which match the masked IP address

                     will be allowed in.

              o      an address/mask in the form ipaddr/maskaddr where  ipaddr

                     is  the  IP address and maskaddr is the netmask in dotted

                     decimal notation for IPv4,  or  similar  for  IPv6,  e.g.

                     ffff:ffff:ffff:ffff::  instead  of  /64. All IP addresses

                     which match the masked IP address will be allowed in.

              o      a hostname pattern using wildcards. If  the  hostname  of Page 19/33



                     the  connecting  IP  (as  determined by a reverse lookup)

                     matches the wildcarded name (using the same rules as nor?

                     mal  unix  filename  matching), the client is allowed in.

                     This only works if "reverse lookup" is enabled  (the  de?

                     fault).

              o      a  hostname.  A plain hostname is matched against the re?

                     verse DNS of the connecting IP (if  "reverse  lookup"  is

                     enabled),  and/or the IP of the given hostname is matched

                     against the connecting IP (if  "forward  lookup"  is  en?

                     abled,  as  it is by default).  Any match will be allowed

                     in.

              o      an '@' followed by a netgroup name, which will  match  if

                     the  reverse DNS of the connecting IP is in the specified

                     netgroup.

              Note IPv6 link-local addresses can have a scope in  the  address

              specification:

                  fe80::1%link1

                  fe80::%link1/64

                  fe80::%link1/ffff:ffff:ffff:ffff::

              You can also combine "hosts allow" with "hosts deny" as a way to

              add exceptions to your deny  list.   When  both  parameters  are

              specified,  the  "hosts  allow" parameter is checked first and a

              match results in the client being able to  connect.   A  non-al?

              lowed  host is then matched against the "hosts deny" list to see

              if it should be rejected.  A host that  does  not  match  either

              list is allowed to connect.

              The default is no "hosts allow" parameter, which means all hosts

              can connect.

       hosts deny

              This parameter allows you to specify a  list  of  comma-  and/or

              whitespace-separated  patterns  that  are matched against a con?

              necting clients hostname and IP address. If the pattern  matches

              then the connection is rejected. See the "hosts allow" parameter Page 20/33



              for more information.

              The default is no "hosts deny" parameter, which means all  hosts

              can connect.

       reverse lookup

              Controls  whether  the  daemon  performs a reverse lookup on the

              client's IP address to determine its hostname, which is used for

              "hosts  allow"  &  "hosts  deny" checks and the "%h" log escape.

              This is enabled by default, but you may wish to  disable  it  to

              save  time  if  you know the lookup will not return a useful re?

              sult, in which case the daemon will use the name  "UNDETERMINED"

              instead.

              If  this  parameter is enabled globally (even by default), rsync

              performs the lookup as soon as a client connects,  so  disabling

              it  for  a module will not avoid the lookup.  Thus, you probably

              want to disable it globally and then enable it for modules  that

              need the information.

       forward lookup

              Controls  whether  the  daemon  performs a forward lookup on any

              hostname specified in an hosts allow/deny setting.   By  default

              this  is  enabled, allowing the use of an explicit hostname that

              would not be returned by reverse DNS of the connecting IP.

       ignore errors

              This parameter tells rsyncd to ignore I/O errors on  the  daemon

              when  deciding  whether to run the delete phase of the transfer.

              Normally rsync skips the --delete step if any  I/O  errors  have

              occurred in order to prevent disastrous deletion due to a tempo?

              rary resource shortage or other I/O error. In  some  cases  this

              test is counter productive so you can use this parameter to turn

              off this behavior.

       ignore nonreadable

              This tells the rsync daemon to completely ignore files that  are

              not  readable  by  the  user. This is useful for public archives

              that may have some non-readable files among the directories, and Page 21/33



              the sysadmin doesn't want those files to be seen at all.

       transfer logging

              This parameter enables per-file logging of downloads and uploads

              in a format somewhat similar to that used by ftp  daemons.   The

              daemon  always logs the transfer at the end, so if a transfer is

              aborted, no mention will be made in the log file.

              If you want to customize the log lines, see the "log format" pa?

              rameter.

       log format

              This parameter allows you to specify the format used for logging

              file transfers when transfer logging is enabled.  The format  is

              a  text  string  containing embedded single-character escape se?

              quences prefixed with a percent (%) character.  An optional  nu?

              meric  field width may also be specified between the percent and

              the escape letter (e.g.  "%-50n %8l %07p").  In addition, one or

              more apostrophes may be specified prior to a numerical escape to

              indicate that the numerical value should  be  made  more  human-

              readable.   The 3 supported levels are the same as for the --hu?

              man-readable command-line option, though the default is for  hu?

              man-readability  to be off.  Each added apostrophe increases the

              level (e.g. "%''l %'b %f").

              The default log  format  is  "%o %h [%a] %m (%u) %f %l",  and  a

              "%t [%p]"  is  always prefixed when using the "log file" parame?

              ter.  (A perl script that will summarize this default log format

              is  included  in the rsync source code distribution in the "sup?

              port" subdirectory: rsyncstats.)

              The single-character escapes that are understood are as follows:

              o      %a the remote IP address (only available for a daemon)

              o      %b the number of bytes actually transferred

              o      %B the permission bits of the file (e.g. rwxrwxrwt)

              o      %c the total size of the block checksums received for the

                     basis file (only when sending)

              o      %C  the  full-file  checksum if it is known for the file. Page 22/33



                     For older  rsync  protocols/versions,  the  checksum  was

                     salted,  and  is thus not a useful value (and is not dis?

                     played when that is the case). For the checksum to output

                     for  a  file, either the --checksum option must be in-ef?

                     fect or the file must have  been  transferred  without  a

                     salted  checksum  being  used.  See the --checksum-choice

                     option for a way to choose the algorithm.

              o      %f the filename (long form on sender; no trailing "/")

              o      %G the gid of the file (decimal) or "DEFAULT"

              o      %h the remote host name (only available for a daemon)

              o      %i an itemized list of what is being updated

              o      %l the length of the file in bytes

              o      %L the string "-> SYMLINK", "=> HARDLINK", or  ""  (where

                     SYMLINK or HARDLINK is a filename)

              o      %m the module name

              o      %M the last-modified time of the file

              o      %n the filename (short form; trailing "/" on dir)

              o      %o the operation, which is "send", "recv", or "del." (the

                     latter includes the trailing period)

              o      %p the process ID of this rsync session

              o      %P the module path

              o      %t the current date time

              o      %u the authenticated username or an empty string

              o      %U the uid of the file (decimal)

              For a list of what the characters mean that are output by  "%i",

              see the --itemize-changes option in the rsync manpage.

              Note  that  some  of the logged output changes when talking with

              older rsync versions.  For instance,  deleted  files  were  only

              output as verbose messages prior to rsync 2.6.4.

       timeout

              This parameter allows you to override the clients choice for I/O

              timeout for this module. Using this  parameter  you  can  ensure

              that  rsync  won't wait on a dead client forever. The timeout is Page 23/33



              specified in seconds. A value of zero means no  timeout  and  is

              the  default.  A  good choice for anonymous rsync daemons may be

              600 (giving a 10 minute timeout).

       refuse options

              This parameter allows you to specify a space-separated  list  of

              rsync  command-line  options  that will be refused by your rsync

              daemon.  You may specify the full option  name,  its  one-letter

              abbreviation,  or  a  wild-card string that matches multiple op?

              tions. Beginning in 3.2.0, you can also negate a match  term  by

              starting it with a "!".

              When  an  option  is refused, the daemon prints an error message

              and exits.

              For example, this would refuse --checksum (-c) and all the vari?

              ous delete options:

                  refuse options = c delete

              The  reason the above refuses all delete options is that the op?

              tions imply --delete, and implied options are refused just  like

              explicit options.

              The use of a negated match allows you to fine-tune your refusals

              after a wild-card, such as this:

                  refuse options = delete-* !delete-during

              Negated matching can also turn your list of refused options into

              a  list  of  accepted options. To do this, begin the list with a

              "*" (to refuse all options) and then specify one or more negated

              matches to accept.  For example:

                  refuse options = * !a !v !compress*

              Don't  worry that the "*" will refuse certain vital options such

              as --dry-run, --server, --no-iconv, --protect-args,  etc.  These

              important  options are not matched by wild-card, so they must be

              overridden by their exact name.  For instance, if you're forcing

              iconv transfers you could use something like this:

                  refuse options = * no-iconv !a !v

              As an additional aid (beginning in 3.2.0), refusing (or "!refus? Page 24/33



              ing") the "a" or "archive"  option also affects all the  options

              that  the  --archive option implies (-rdlptgoD), but only if the

              option  is matched explicitly (not using  a  wildcard).  If  you

              want  to  do  something  tricky, you can use "archive*" to avoid

              this side-effect, but keep in mind that no normal  rsync  client

              ever sends the actual archive option to the server.

              As  an  additional  safety feature, the refusal of "delete" also

              refuses remove-source-files when the daemon is  the  sender;  if

              you   want   the  latter  without  the  former,  instead  refuse

              "delete-*" as that refuses all the delete modes without  affect?

              ing  --remove-source-files.  (Keep  in  mind  that  the client's

              --delete option typically results in --delete-during.)

              When un-refusing  delete  options,  you  should  either  specify

              "!delete*"  (to  accept all delete options) or specify a limited

              set that includes "delete", such as:

                  refuse options = * !a !delete !delete-during

              ... whereas this accepts any delete option  except  --delete-af?

              ter:

                  refuse options = * !a !delete* delete-after

              A  note  on refusing "compress" -- it is better to set the "dont

              compress" daemon parameter to "*" because that disables compres?

              sion  silently  instead  of  returning  an error that forces the

              client to remove the -z option.

              If you are un-refusing the compress option, you probably want to

              match  "!compress*" so that you also accept the --compress-level

              option.

              Note that the "copy-devices" & "write-devices" options  are  re?

              fused  by  default,  but  they  can  be explicitly accepted with

              "!copy-devices" and/or "!write-devices".  The options "log-file"

              and  "log-file-format"  are  forcibly  refused and cannot be ac?

              cepted.

              Here are all the options that are not matched by wild-cards:

              o      --server: Required for rsync to even work. Page 25/33



              o      --rsh, -e: Required to convey compatibility flags to  the

                     server.

              o      --out-format:  This is required to convey output behavior

                     to a remote receiver.  While rsync passes the older alias

                     --log-format  for  compatibility  reasons,  this  options

                     should not be confused with --log-file-format.

              o      --sender: Use "write only" parameter instead of  refusing

                     this.

              o      --dry-run, -n: Who would want to disable this?

              o      --protect-args, -s: This actually makes transfers safer.

              o      --from0,  -0:  Makes  it easier to accept/refuse --files-

                     from without affecting this helpful modifier.

              o      --iconv: This is auto-disabled based on "charset" parame?

                     ter.

              o      --no-iconv: Most transfers use this option.

              o      --checksum-seed: Is a fairly rare, safe option.

              o      --write-devices: Is non-wild but also auto-disabled.

       dont compress

              This  parameter allows you to select filenames based on wildcard

              patterns that should not be compressed when pulling  files  from

              the  daemon (no analogous parameter exists to govern the pushing

              of files to a daemon).  Compression can be expensive in terms of

              CPU  usage,  so  it is usually good to not try to compress files

              that won't compress well, such as already compressed files.

              The "dont compress" parameter takes a  space-separated  list  of

              case-insensitive wildcard patterns. Any source filename matching

              one of the patterns will be compressed  as  little  as  possible

              during  the transfer.  If the compression algorithm has an "off"

              level (such as zlib/zlibx) then no compression occurs for  those

              files.  Other algorithms have the level minimized to reduces the

              CPU usage as much as possible.

              See the --skip-compress parameter in the  rsync(1)  manpage  for

              the  list  of  file suffixes that are not compressed by default. Page 26/33



              Specifying a value for the "dont compress" parameter changes the

              default when the daemon is the sender.

       early exec, pre-xfer exec, post-xfer exec

              You  may  specify a command to be run in the early stages of the

              connection, or right before and/or after the transfer.   If  the

              early exec  or  pre-xfer exec command returns an error code, the

              transfer is aborted before it begins.  Any output from the  pre-

              xfer exec command on stdout (up to several KB) will be displayed

              to the user when aborting, but is not displayed  if  the  script

              returns success.  The other programs cannot send any text to the

              user.  All output except for the pre-xfer exec  stdout  goes  to

              the  corresponding  daemon's  stdout/stderr,  which is typically

              discarded.  See the --no-detatch option for a  way  to  see  the

              daemon's output, which can assist with debugging.

              Note  that  the  early exec  command runs before any part of the

              transfer request is known except  for  the  module  name.   This

              helper  script can be used to setup a disk mount or decrypt some

              data into a module dir, but you may need to  use  lock file  and

              max connections  to  avoid  concurrency  issues.   If the client

              rsync specified the --early-input=FILE option, it can send up to

              about  5K  of  data to the stdin of the early script.  The stdin

              will otherwise be empty.

              Note that the post-xfer exec command is still run even if one of

              the  other scripts returns an error code. The pre-xfer exec com?

              mand will not be run, however, if the early exec command fails.

              The following environment variables will be set, though some are

              specific to the pre-xfer or the post-xfer environment:

              o      RSYNC_MODULE_NAME: The name of the module being accessed.

              o      RSYNC_MODULE_PATH: The path configured for the module.

              o      RSYNC_HOST_ADDR: The accessing host's IP address.

              o      RSYNC_HOST_NAME: The accessing host's name.

              o      RSYNC_USER_NAME:  The  accessing user's name (empty if no

                     user). Page 27/33



              o      RSYNC_PID: A unique number for this transfer.

              o      RSYNC_REQUEST: (pre-xfer only) The module/path info spec?

                     ified by the user.  Note that the user can specify multi?

                     ple source files, so the request can  be  something  like

                     "mod/path1 mod/path2", etc.

              o      RSYNC_ARG#: (pre-xfer only) The pre-request arguments are

                     set  in  these  numbered  values.  RSYNC_ARG0  is  always

                     "rsyncd",  followed  by  the  options  that  were used in

                     RSYNC_ARG1, and so on.  There will be a value of "."  in?

                     dicating  that the options are done and the path args are

                     beginning --  these  contain   similar   information   to

                     RSYNC_REQUEST,  but  with values separated and the module

                     name stripped off.

              o      RSYNC_EXIT_STATUS: (post-xfer  only)  the  server  side's

                     exit value.  This will be 0 for a successful run, a posi?

                     tive value for an error that the server generated,  or  a

                     -1  if rsync failed to exit properly.  Note that an error

                     that occurs on the client side  does  not  currently  get

                     sent  to  the  server side, so this is not the final exit

                     status for the whole transfer.

              o      RSYNC_RAW_STATUS: (post-xfer only)  the  raw  exit  value

                     from waitpid().

              Even  though  the  commands  can be associated with a particular

              module, they are run using the  permissions  of  the  user  that

              started  the  daemon  (not the module's uid/gid setting) without

              any chroot restrictions.

              These settings honor 2 environment variables: use RSYNC_SHELL to

              set  a  shell  to  use when running the command (which otherwise

              uses   your   system()   call's   default   shell),   and    use

              RSYNC_NO_XFER_EXEC to disable both options completely.

CONFIG DIRECTIVES

       There are currently two config directives available that allow a config

       file to incorporate the contents of other files:  &include and  &merge. Page 28/33



       Both allow a reference to either a file or a directory.  They differ in

       how segregated the file's contents are considered to be.

       The &include directive treats each file as more distinct, with each one

       inheriting  the  defaults  of  the  parent file, starting the parameter

       parsing as globals/defaults, and leaving the defaults unchanged for the

       parsing of the rest of the parent file.

       The  &merge directive, on the other hand, treats the file's contents as

       if it were simply inserted in place of the directive, and thus  it  can

       set  parameters in a module started in another file, can affect the de?

       faults for other files, etc.

       When an &include or &merge directive refers to  a  directory,  it  will

       read in all the *.conf or *.inc files (respectively) that are contained

       inside that directory (without any recursive scanning), with the  files

       sorted  into alpha order.  So, if you have a directory named "rsyncd.d"

       with the files "foo.conf", "bar.conf", and "baz.conf" inside  it,  this

       directive:

           &include /path/rsyncd.d

       would be the same as this set of directives:

           &include /path/rsyncd.d/bar.conf

           &include /path/rsyncd.d/baz.conf

           &include /path/rsyncd.d/foo.conf

       except  that  it adjusts as files are added and removed from the direc?

       tory.

       The advantage of the &include directive is that you can define  one  or

       more modules in a separate file without worrying about unintended side-

       effects between the self-contained module files.

       The advantage of the &merge directive is that you can load config snip?

       pets that can be included into multiple module definitions, and you can

       also  set  global  values  that  will  affect  connections   (such   as

       motd file), or globals that will affect other include files.

       For example, this is a useful /etc/rsyncd.conf file:

           port = 873

           log file = /var/log/rsync.log Page 29/33



           pid file = /var/lock/rsync.lock

           &merge /etc/rsyncd.d

           &include /etc/rsyncd.d

       This  would merge any /etc/rsyncd.d/*.inc files (for global values that

       should stay in effect), and then include any /etc/rsyncd.d/*.conf files

       (defining modules without any global-value cross-talk).

AUTHENTICATION STRENGTH

       The  authentication protocol used in rsync is a 128 bit MD4 based chal?

       lenge response system. This is fairly weak protection, though (with  at

       least one brute-force hash-finding algorithm publicly available), so if

       you want really top-quality security, then I  recommend  that  you  run

       rsync  over ssh.  (Yes, a future version of rsync will switch over to a

       stronger hashing method.)

       Also note that the rsync daemon protocol does not currently provide any

       encryption  of  the  data that is transferred over the connection. Only

       authentication is provided. Use ssh as the transport if  you  want  en?

       cryption.

       You  can also make use of SSL/TLS encryption if you put rsync behind an

       SSL proxy.

SSL/TLS Daemon Setup

       When setting up an rsync daemon for access via SSL/TLS, you  will  need

       to  configure  a proxy (such as haproxy or nginx) as the front-end that

       handles the encryption.

       o      You should limit the access to the backend-rsyncd port  to  only

              allow  the  proxy  to connect.  If it is on the same host as the

              proxy, then configuring it to only listen on localhost is a good

              idea.

       o      You  should  consider turning on the proxy protocol parameter if

              your proxy supports sending that information.  The examples  be?

              low assume that this is enabled.

       An example haproxy setup is as follows:

           frontend fe_rsync-ssl

              bind :::874 ssl crt /etc/letsencrypt/example.com/combined.pem Page 30/33



              mode tcp

              use_backend be_rsync

           backend be_rsync

              mode tcp

              server local-rsync 127.0.0.1:873 check send-proxy

       An example nginx proxy setup is as follows:

           stream {

              server {

                  listen 874 ssl;

                  listen [::]:874 ssl;

                  ssl_certificate /etc/letsencrypt/example.com/fullchain.pem;

                  ssl_certificate_key /etc/letsencrypt/example.com/privkey.pem;

                  proxy_pass localhost:873;

                  proxy_protocol on; # Requires "proxy protocol = true"

                  proxy_timeout 1m;

                  proxy_connect_timeout 5s;

              }

           }

EXAMPLES

       A  simple  rsyncd.conf file that allow anonymous rsync to a ftp area at

       /home/ftp would be:

           [ftp]

                   path = /home/ftp

                   comment = ftp export area

       A more sophisticated example would be:

           uid = nobody

           gid = nobody

           use chroot = yes

           max connections = 4

           syslog facility = local5

           pid file = /var/run/rsyncd.pid

           [ftp]

                   path = /var/ftp/./pub Page 31/33



                   comment = whole ftp area (approx 6.1 GB)

           [sambaftp]

                   path = /var/ftp/./pub/samba

                   comment = Samba ftp area (approx 300 MB)

           [rsyncftp]

                   path = /var/ftp/./pub/rsync

                   comment = rsync ftp area (approx 6 MB)

           [sambawww]

                   path = /public_html/samba

                   comment = Samba WWW pages (approx 240 MB)

           [cvs]

                   path = /data/cvs

                   comment = CVS repository (requires authentication)

                   auth users = tridge, susan

                   secrets file = /etc/rsyncd.secrets

       The /etc/rsyncd.secrets file would look something like this:

           tridge:mypass

           susan:herpass

FILES

       /etc/rsyncd.conf or rsyncd.conf

SEE ALSO

       rsync(1), rsync-ssl(1)

BUGS

       Please report  bugs!  The  rsync  bug  tracking  system  is  online  at

       https://rsync.samba.org/.

VERSION

       This man page is current for version 3.2.3 of rsync.

CREDITS

       rsync  is  distributed  under  the GNU General Public License.  See the

       file COPYING for details.

       The primary ftp site for rsync is ftp://rsync.samba.org/pub/rsync

       A web site is available at https://rsync.samba.org/.

       We would be delighted to hear from you if you like this program. Page 32/33



       This program uses the zlib compression  library  written  by  Jean-loup

       Gailly and Mark Adler.

THANKS

       Thanks  to Warren Stanley for his original idea and patch for the rsync

       daemon.  Thanks to Karsten Thygesen for his many suggestions and  docu?

       mentation!

AUTHOR

       rsync  was  written by Andrew Tridgell and Paul Mackerras.  Many people

       have later contributed to it.

       Mailing  lists  for  support   and   development   are   available   at

       https://lists.samba.org/.

rsyncd.conf 3.2.3                 06 Aug 2020                   rsyncd.conf(5)

Page 33/33


