
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'rmid-java-11-openjdk-11.0.20.0.8-3.el9.x86_64.1' command

$ man rmid-java-11-openjdk-11.0.20.0.8-3.el9.x86_64.1

rmid(1) Remote Method Invocation (RMI) Tools rmid(1)

NAME

 rmid - Starts the activation system daemon that enables objects to be

 registered and activated in a Java Virtual Machine (JVM).

SYNOPSIS

 rmid [options]

 options

 The command-line options. See Options.

DESCRIPTION

 The rmid command starts the activation system daemon. The activation

 system daemon must be started before activatable objects can be either

 registered with the activation system or activated in a JVM. For

 details on how to write programs that use activatable objects, the

 Using Activation tutorial at

 http://docs.oracle.com/javase/8/docs/technotes/guides/rmi/activation/overview.html

 Start the daemon by executing the rmid command and specifying a

 security policy file, as follows:

 rmid -J-Djava.security.policy=rmid.policy

 When you run Oracle?s implementation of the rmid command, by default

 you must specify a security policy file so that the rmid command can

 verify whether or not the information in each ActivationGroupDesc is

 allowed to be used to start a JVM for an activation group.

 Specifically, the command and options specified by the Page 1/8

 CommandEnvironment and any properties passed to an ActivationGroupDesc

 constructor must now be explicitly allowed in the security policy file

 for the rmid command. The value of the sun.rmi.activation.execPolicy

 property dictates the policy that the rmid command uses to determine

 whether or not the information in an ActivationGroupDesc can be used to

 start a JVM for an activation group. For more information see the

 description of the -J-Dsun.rmi.activation.execPolicy=policy option.

 Executing the rmid command starts the Activator and an internal

 registry on the default port1098 and binds an ActivationSystem to the

 name java.rmi.activation.ActivationSystem in this internal registry.

 To specify an alternate port for the registry, you must specify the

 -port option when you execute the rmid command. For example, the

 following command starts the activation system daemon and a registry on

 the registry's default port, 1099.

 rmid -J-Djava.security.policy=rmid.policy -port 1099

START RMID ON DEMAND

 An alternative to starting rmid from the command line is to configure

 inetd (Oracle Solaris) or xinetd (Linux) to start rmid on demand.

 When RMID starts, it attempts to obtain an inherited channel (inherited

 from inetd/xinetd) by calling the System.inheritedChannel method. If

 the inherited channel is null or not an instance of

 java.nio.channels.ServerSocketChannel, then RMID assumes that it was

 not started by inetd/xinetd, and it starts as previously described.

 If the inherited channel is a ServerSocketChannel instance, then RMID

 uses the java.net.ServerSocket obtained from the ServerSocketChannel as

 the server socket that accepts requests for the remote objects it

 exports: The registry in which the java.rmi.activation.ActivationSystem

 is bound and the java.rmi.activation.Activator remote object. In this

 mode, RMID behaves the same as when it is started from the command

 line, except in the following cases:

 ? Output printed to System.err is redirected to a file. This file is

 located in the directory specified by the java.io.tmpdir system

 property (typically /var/tmp or /tmp) with the prefix rmid-err and Page 2/8

 the suffix tmp.

 ? The -port option is not allowed. If this option is specified, then

 RMID exits with an error message.

 ? The -log option is required. If this option is not specified, then

 RMID exits with an error message

 See the man pages for inetd (Oracle Solaris) or xinetd (Linux) for

 details on how to configure services to be started on demand.

OPTIONS

 -Coption

 Specifies an option that is passed as a command-line argument to

 each child process (activation group) of the rmid command when

 that process is created. For example, you could pass a property

 to each virtual machine spawned by the activation system daemon:

 rmid -C-Dsome.property=value

 This ability to pass command-line arguments to child processes

 can be useful for debugging. For example, the following command

 enables server-call logging in all child JVMs.

 rmid -C-Djava.rmi.server.logCalls=true

 -Joption

 Specifies an option that is passed to the Java interpreter

 running RMID. For example, to specify that the rmid command use

 a policy file named rmid.policy, the -J option can be used to

 define the java.security.policy property on the rmid command

 line, for example:

 rmid -J-Djava.security.policy-rmid.policy

 -J-Dsun.rmi.activation.execPolicy=policy

 Specifies the policy that RMID employs to check commands and

 command-line options used to start the JVM in which an

 activation group runs. Please note that this option exists only

 in Oracle's implementation of the Java RMI activation daemon. If

 this property is not specified on the command line, then the

 result is the same as though -J-

 Dsun.rmi.activation.execPolicy=default were specified. The Page 3/8

 possible values of policy can be default, policyClassName, or

 none.

 ? default

 The default or unspecified value execPolicy allows the rmid

 command to execute commands with specific command-line options

 only when the rmid command was granted permission to execute

 those commands and options in the security policy file that

 the rmid command uses. Only the default activation group

 implementation can be used with the default execution policy.

 The rmid command starts a JVM for an activation group with the

 information in the group's registered activation group

 descriptor, an ActivationGroupDesc. The group descriptor

 specifies an optional ActivationGroupDesc.CommandEnvironment

 that includes the command to execute to start the activation

 group and any command-line options to be added to the command

 line. By default, the rmid command uses the java command found

 in java.home. The group descriptor also contains properties

 overrides that are added to the command line as options

 defined as: -D<property>=<value>.The

 com.sun.rmi.rmid.ExecPermission permission grants the rmid

 command permission to execute a command that is specified in

 the group descriptor's CommandEnvironment to start an

 activation group. The com.sun.rmi.rmid.ExecOptionPermission

 permission enables the rmid command to use command-line

 options, specified as properties overrides in the group

 descriptor or as options in the CommandEnvironment when

 starting the activation group.When granting the rmid command

 permission to execute various commands and options, the

 permissions ExecPermission and ExecOptionPermission must be

 granted to all code sources.

 ExecPermission

 The ExecPermission class represents permission for the rmid

 command to execute a specific command to start an activation Page 4/8

 group.

 Syntax: The name of an ExecPermission is the path name of a

 command to grant the rmid command permission to execute. A

 path name that ends in a slash (/) and an asterisk (*)

 indicates that all of the files contained in that directory

 where slash is the file-separator character,

 File.separatorChar. A path name that ends in a slash (/) and a

 minus sign (-) indicates all files and subdirectories

 contained in that directory (recursively). A path name that

 consists of the special token <<ALL FILES>> matches any file.

 A path name that consists of an asterisk (*) indicates all the

 files in the current directory. A path name that consists of a

 minus sign (-) indicates all the files in the current

 directory and (recursively) all files and subdirectories

 contained in the current directory.

 ExecOptionPermission

 The ExecOptionPermission class represents permission for the

 rmid command to use a specific command-line option when

 starting an activation group. The name of an

 ExecOptionPermission is the value of a command-line option.

 Syntax: Options support a limited wild card scheme. An

 asterisk signifies a wild card match, and it can appear as the

 option name itself (matches any option), or an asterisk (*)

 can appear at the end of the option name only when the

 asterisk (*) follows a dot (.) or an equals sign (=).

 For example: * or -Dmydir.* or -Da.b.c=* is valid, but *mydir

 or -Da*b or ab* is not.

 Policy file for rmid

 When you grant the rmid command permission to execute various

 commands and options, the permissions ExecPermission and

 ExecOptionPermission must be granted to all code sources

 (universally). It is safe to grant these permissions

 universally because only the rmid command checks these Page 5/8

 permissions.

 An example policy file that grants various execute permissions

 to the rmid command is:

 grant {

 permission com.sun.rmi.rmid.ExecPermission

 "/files/apps/java/jdk1.7.0/solaris/bin/java";

 permission com.sun.rmi.rmid.ExecPermission

 "/files/apps/rmidcmds/*";

 permission com.sun.rmi.rmid.ExecOptionPermission

 "-Djava.security.policy=/files/policies/group.policy";

 permission com.sun.rmi.rmid.ExecOptionPermission

 "-Djava.security.debug=*";

 permission com.sun.rmi.rmid.ExecOptionPermission

 "-Dsun.rmi.*";

 };

 The first permission granted allows the rmid tcommand o

 execute the 1.7.0 release of the java command, specified by

 its explicit path name. By default, the version of the java

 command found in java.home is used (the same one that the rmid

 command uses), and does not need to be specified in the policy

 file. The second permission allows the rmid command to execute

 any command in the directory /files/apps/rmidcmds.

 The third permission granted, an ExecOptionPermission, allows

 the rmid command to start an activation group that defines the

 security policy file to be /files/policies/group.policy. The

 next permission allows the java.security.debug property to be

 used by an activation group. The last permission allows any

 property in the sun.rmi property name hierarchy to be used by

 activation groups.

 To start the rmid command with a policy file, the

 java.security.policy property needs to be specified on the

 rmid command line, for example:

 rmid -J-Djava.security.policy=rmid.policy. Page 6/8

 ? <policyClassName>

 If the default behavior is not flexible enough, then an

 administrator can provide, when starting the rmid command, the

 name of a class whose checkExecCommand method is executed to

 check commands to be executed by the rmid command.

 The policyClassName specifies a public class with a public,

 no-argument constructor and an implementation of the following

 checkExecCommand method:

 public void checkExecCommand(ActivationGroupDesc desc, String[] command)

 throws SecurityException;

 Before starting an activation group, the rmid command calls

 the policy's checkExecCommand method and passes to it the

 activation group descriptor and an array that contains the

 complete command to start the activation group. If the

 checkExecCommand throws a SecurityException, then the rmid

 command does not start the activation group and an

 ActivationException is thrown to the caller attempting to

 activate the object.

 ? none

 If the sun.rmi.activation.execPolicy property value is none,

 then the rmid command does not perform any validation of

 commands to start activation groups.

 -log dir

 Specifies the name of the directory the activation system daemon

 uses to write its database and associated information. The log

 directory defaults to creating a log, in the directory in which

 the rmid command was executed.

 -port port

 Specifies the port the registry uses. The activation system

 daemon binds the ActivationSystem, with the name

 java.rmi.activation.ActivationSystem, in this registry. The

 ActivationSystem on the local machine can be obtained using the

 following Naming.lookup method call: Page 7/8

 import java.rmi.*;

 import java.rmi.activation.*;

 ActivationSystem system; system = (ActivationSystem)

 Naming.lookup("//:port/java.rmi.activation.ActivationSystem");

 -stop

 Stops the current invocation of the rmid command for a port

 specified by the -port option. If no port is specified, then

 this option stops the rmid invocation running on port 1098.

ENVIRONMENT VARIABLES

 CLASSPATH

 Used to provide the system a path to user-defined classes.

 Directories are separated by colons, for example:

 .:/usr/local/java/classes.

SEE ALSO

 ? java(1)

 ? Setting the Class Path

JDK 8 21 November 2013 rmid(1)

Page 8/8

