
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'res_init.3' command

$ man res_init.3

RESOLVER(3) Linux Programmer's Manual RESOLVER(3)

NAME

 res_ninit, res_nclose, res_nquery, res_nsearch, res_nquerydomain,

 res_nmkquery, res_nsend, res_init, res_query, res_search, res_querydo?

 main, res_mkquery, res_send, dn_comp, dn_expand - resolver routines

SYNOPSIS

 #include <netinet/in.h>

 #include <arpa/nameser.h>

 #include <resolv.h>

 struct __res_state;

 typedef struct __res_state *res_state;

 int res_ninit(res_state statep);

 void res_nclose(res_state statep);

 int res_nquery(res_state statep,

 const char *dname, int class, int type,

 unsigned char *answer, int anslen);

 int res_nsearch(res_state statep,

 const char *dname, int class, int type,

 unsigned char *answer, int anslen);

 int res_nquerydomain(res_state statep,

 const char *name, const char *domain,

 int class, int type, unsigned char *answer,

 int anslen); Page 1/9

 int res_nmkquery(res_state statep,

 int op, const char *dname, int class,

 int type, const unsigned char *data, int datalen,

 const unsigned char *newrr,

 unsigned char *buf, int buflen);

 int res_nsend(res_state statep,

 const unsigned char *msg, int msglen,

 unsigned char *answer, int anslen);

 int dn_comp(const char *exp_dn, unsigned char *comp_dn,

 int length, unsigned char **dnptrs,

 unsigned char **lastdnptr);

 int dn_expand(const unsigned char *msg,

 const unsigned char *eomorig,

 const unsigned char *comp_dn, char *exp_dn,

 int length);

 Deprecated

 extern struct __res_state _res;

 int res_init(void);

 int res_query(const char *dname, int class, int type,

 unsigned char *answer, int anslen);

 int res_search(const char *dname, int class, int type,

 unsigned char *answer, int anslen);

 int res_querydomain(const char *name, const char *domain,

 int class, int type, unsigned char *answer,

 int anslen);

 int res_mkquery(int op, const char *dname, int class,

 int type, const unsigned char *data, int datalen,

 const unsigned char *newrr,

 unsigned char *buf, int buflen);

 int res_send(const unsigned char *msg, int msglen,

 unsigned char *answer, int anslen);

 Link with -lresolv.

DESCRIPTION Page 2/9

 Note: This page is incomplete (various resolver functions provided by

 glibc are not described) and likely out of date.

 The functions described below make queries to and interpret the re?

 sponses from Internet domain name servers.

 The API consists of a set of more modern, reentrant functions and an

 older set of nonreentrant functions that have been superseded. The

 traditional resolver interfaces such as res_init() and res_query() use

 some static (global) state stored in the _res structure, rendering

 these functions non-thread-safe. BIND 8.2 introduced a set of new in?

 terfaces res_ninit(), res_nquery(), and so on, which take a res_state

 as their first argument, so you can use a per-thread resolver state.

 The res_ninit() and res_init() functions read the configuration files

 (see resolv.conf(5)) to get the default domain name and name server ad?

 dress(es). If no server is given, the local host is tried. If no do?

 main is given, that associated with the local host is used. It can be

 overridden with the environment variable LOCALDOMAIN. res_ninit() or

 res_init() is normally executed by the first call to one of the other

 functions. Every call to res_ninit() requires a corresponding call to

 res_nclose() to free memory allocated by res_ninit() and subsequent

 calls to res_nquery().

 The res_nquery() and res_query() functions query the name server for

 the fully qualified domain name name of specified type and class. The

 reply is left in the buffer answer of length anslen supplied by the

 caller.

 The res_nsearch() and res_search() functions make a query and waits for

 the response like res_nquery() and res_query(), but in addition they

 implement the default and search rules controlled by RES_DEFNAMES and

 RES_DNSRCH (see description of _res options below).

 The res_nquerydomain() and res_querydomain() functions make a query us?

 ing res_nquery()/res_query() on the concatenation of name and domain.

 The following functions are lower-level routines used by

 res_nquery()/res_query().

 The res_nmkquery() and res_mkquery() functions construct a query mes? Page 3/9

 sage in buf of length buflen for the domain name dname. The query type

 op is one of the following (typically QUERY):

 QUERY Standard query.

 IQUERY Inverse query. This option was removed in glibc 2.26, since it

 has not been supported by DNS servers for a very long time.

 NS_NOTIFY_OP

 Notify secondary of SOA (Start of Authority) change.

 newrr is currently unused.

 The res_nsend() and res_send() function send a preformatted query given

 in msg of length msglen and returns the answer in answer which is of

 length anslen. They will call res_ninit()/res_init() if it has not al?

 ready been called.

 The dn_comp() function compresses the domain name exp_dn and stores it

 in the buffer comp_dn of length length. The compression uses an array

 of pointers dnptrs to previously compressed names in the current mes?

 sage. The first pointer points to the beginning of the message and the

 list ends with NULL. The limit of the array is specified by lastdnptr.

 If dnptr is NULL, domain names are not compressed. If lastdnptr is

 NULL, the list of labels is not updated.

 The dn_expand() function expands the compressed domain name comp_dn to

 a full domain name, which is placed in the buffer exp_dn of size

 length. The compressed name is contained in a query or reply message,

 and msg points to the beginning of the message.

 The resolver routines use configuration and state information contained

 in a __res_state structure (either passed as the statep argument, or in

 the global variable _res, in the case of the older nonreentrant func?

 tions). The only field of this structure that is normally manipulated

 by the user is the options field. This field can contain the bitwise

 "OR" of the following options:

 RES_INIT

 True if res_ninit() or res_init() has been called.

 RES_DEBUG

 Print debugging messages. This option is available only if Page 4/9

 glibc was built with debugging enabled, which is not the de?

 fault.

 RES_AAONLY (unimplemented; deprecated in glibc 2.25)

 Accept authoritative answers only. res_send() continues until

 it finds an authoritative answer or returns an error. This op?

 tion was present but unimplemented in glibc until version 2.24;

 since glibc 2.25, it is deprecated, and its usage produces a

 warning.

 RES_USEVC

 Use TCP connections for queries rather than UDP datagrams.

 RES_PRIMARY (unimplemented; deprecated in glibc 2.25)

 Query primary domain name server only. This option was present

 but unimplemented in glibc until version 2.24; since glibc 2.25,

 it is deprecated, and its usage produces a warning.

 RES_IGNTC

 Ignore truncation errors. Don't retry with TCP.

 RES_RECURSE

 Set the recursion desired bit in queries. Recursion is carried

 out by the domain name server, not by res_send(). [Enabled by

 default].

 RES_DEFNAMES

 If set, res_search() will append the default domain name to sin?

 gle component names?that is, those that do not contain a dot.

 [Enabled by default].

 RES_STAYOPEN

 Used with RES_USEVC to keep the TCP connection open between

 queries.

 RES_DNSRCH

 If set, res_search() will search for hostnames in the current

 domain and in parent domains. This option is used by gethostby?

 name(3). [Enabled by default].

 RES_INSECURE1

 Accept a response from a wrong server. This can be used to de? Page 5/9

 tect potential security hazards, but you need to compile glibc

 with debugging enabled and use RES_DEBUG option (for debug pur?

 pose only).

 RES_INSECURE2

 Accept a response which contains a wrong query. This can be

 used to detect potential security hazards, but you need to com?

 pile glibc with debugging enabled and use RES_DEBUG option (for

 debug purpose only).

 RES_NOALIASES

 Disable usage of HOSTALIASES environment variable.

 RES_USE_INET6

 Try an AAAA query before an A query inside the gethostbyname(3)

 function, and map IPv4 responses in IPv6 "tunneled form" if no

 AAAA records are found but an A record set exists. Since glibc

 2.25, this option is deprecated, and its usage produces a warn?

 ing; applications should use getaddrinfo(3), rather than geth?

 ostbyname(3).

 RES_ROTATE

 Causes round-robin selection of name servers from among those

 listed. This has the effect of spreading the query load among

 all listed servers, rather than having all clients try the first

 listed server first every time.

 RES_NOCHECKNAME (unimplemented; deprecated in glibc 2.25)

 Disable the modern BIND checking of incoming hostnames and mail

 names for invalid characters such as underscore (_), non-ASCII,

 or control characters. This option was present in glibc until

 version 2.24; since glibc 2.25, it is deprecated, and its usage

 produces a warning.

 RES_KEEPTSIG (unimplemented; deprecated in glibc 2.25)

 Do not strip TSIG records. This option was present but unimple?

 mented in glibc until version 2.24; since glibc 2.25, it is dep?

 recated, and its usage produces a warning.

 RES_BLAST (unimplemented; deprecated in glibc 2.25) Page 6/9

 Send each query simultaneously and recursively to all servers.

 This option was present but unimplemented in glibc until version

 2.24; since glibc 2.25, it is deprecated, and its usage produces

 a warning.

 RES_USEBSTRING (glibc 2.3.4 to 2.24)

 Make reverse IPv6 lookups using the bit-label format described

 in RFC 2673; if this option is not set (which is the default),

 then nibble format is used. This option was removed in glibc

 2.25, since it relied on a backward-incompatible DNS extension

 that was never deployed on the Internet.

 RES_NOIP6DOTINT (glibc 2.24 and earlier)

 Use ip6.arpa zone in IPv6 reverse lookup instead of ip6.int,

 which is deprecated since glibc 2.3.4. This option is present

 in glibc up to and including version 2.24, where it is enabled

 by default. In glibc 2.25, this option was removed.

 RES_USE_EDNS0 (since glibc 2.6)

 Enables support for the DNS extensions (EDNS0) described in RFC

 2671.

 RES_SNGLKUP (since glibc 2.10)

 By default, glibc performs IPv4 and IPv6 lookups in parallel

 since version 2.9. Some appliance DNS servers cannot handle

 these queries properly and make the requests time out. This op?

 tion disables the behavior and makes glibc perform the IPv6 and

 IPv4 requests sequentially (at the cost of some slowdown of the

 resolving process).

 RES_SNGLKUPREOP

 When RES_SNGLKUP option is enabled, opens a new socket for the

 each request.

 RES_USE_DNSSEC

 Use DNSSEC with OK bit in OPT record. This option implies

 RES_USE_EDNS0.

 RES_NOTLDQUERY

 Do not look up unqualified name as a top-level domain (TLD). Page 7/9

 RES_DEFAULT

 Default option which implies: RES_RECURSE, RES_DEFNAMES,

 RES_DNSRCH, and RES_NOIP6DOTINT.

RETURN VALUE

 The res_ninit() and res_init() functions return 0 on success, or -1 if

 an error occurs.

 The res_nquery(), res_query(), res_nsearch(), res_search(), res_nquery?

 domain(), res_querydomain(), res_nmkquery(), res_mkquery(),

 res_nsend(), and res_send() functions return the length of the re?

 sponse, or -1 if an error occurs.

 The dn_comp() and dn_expand() functions return the length of the com?

 pressed name, or -1 if an error occurs.

 In the case of an error return from res_nquery(), res_query(),

 res_nsearch(), res_search(), res_nquerydomain(), or res_querydomain(),

 the global variable h_errno (see gethostbyname(3)) can be consulted to

 determine the cause of the error.

FILES

 /etc/resolv.conf

 resolver configuration file

 /etc/host.conf

 resolver configuration file

ATTRIBUTES

 For an explanation of the terms used in this section, see at?

 tributes(7).

 ??

 ?Interface ? Attribute ? Value ?

 ??

 ?res_ninit(), res_nclose(), ? Thread safety ? MT-Safe locale ?

 ?res_nquery(), ? ? ?

 ?res_nsearch(), res_nquerydomain(), ? ? ?

 ?res_nsend() ? ? ?

 ??

 ?res_nmkquery(), dn_comp(), ? Thread safety ? MT-Safe ? Page 8/9

 ?dn_expand() ? ? ?

 ??

CONFORMING TO

 4.3BSD.

SEE ALSO

 gethostbyname(3), resolv.conf(5), resolver(5), hostname(7), named(8)

 The GNU C library source file resolv/README.

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

GNU 2020-12-21 RESOLVER(3)

Page 9/9

