
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'regex.7' command

$ man regex.7

REGEX(7) Linux Programmer's Manual REGEX(7)

NAME

 regex - POSIX.2 regular expressions

DESCRIPTION

 Regular expressions ("RE"s), as defined in POSIX.2, come in two forms:

 modern REs (roughly those of egrep; POSIX.2 calls these "extended" REs)

 and obsolete REs (roughly those of ed(1); POSIX.2 "basic" REs). Obso?

 lete REs mostly exist for backward compatibility in some old programs;

 they will be discussed at the end. POSIX.2 leaves some aspects of RE

 syntax and semantics open; "(!)" marks decisions on these aspects that

 may not be fully portable to other POSIX.2 implementations.

 A (modern) RE is one(!) or more nonempty(!) branches, separated by '|'.

 It matches anything that matches one of the branches.

 A branch is one(!) or more pieces, concatenated. It matches a match

 for the first, followed by a match for the second, and so on.

 A piece is an atom possibly followed by a single(!) '*', '+', '?', or

 bound. An atom followed by '*' matches a sequence of 0 or more matches

 of the atom. An atom followed by '+' matches a sequence of 1 or more

 matches of the atom. An atom followed by '?' matches a sequence of 0

 or 1 matches of the atom.

 A bound is '{' followed by an unsigned decimal integer, possibly fol?

 lowed by ',' possibly followed by another unsigned decimal integer, al?

 ways followed by '}'. The integers must lie between 0 and RE_DUP_MAX Page 1/5

 (255(!)) inclusive, and if there are two of them, the first may not ex?

 ceed the second. An atom followed by a bound containing one integer i

 and no comma matches a sequence of exactly i matches of the atom. An

 atom followed by a bound containing one integer i and a comma matches a

 sequence of i or more matches of the atom. An atom followed by a bound

 containing two integers i and j matches a sequence of i through j (in?

 clusive) matches of the atom.

 An atom is a regular expression enclosed in "()" (matching a match for

 the regular expression), an empty set of "()" (matching the null

 string)(!), a bracket expression (see below), '.' (matching any single

 character), '^' (matching the null string at the beginning of a line),

 '$' (matching the null string at the end of a line), a '\' followed by

 one of the characters "^.[$()|*+?{\" (matching that character taken as

 an ordinary character), a '\' followed by any other character(!)

 (matching that character taken as an ordinary character, as if the '\'

 had not been present(!)), or a single character with no other signifi?

 cance (matching that character). A '{' followed by a character other

 than a digit is an ordinary character, not the beginning of a bound(!).

 It is illegal to end an RE with '\'.

 A bracket expression is a list of characters enclosed in "[]". It nor?

 mally matches any single character from the list (but see below). If

 the list begins with '^', it matches any single character (but see be?

 low) not from the rest of the list. If two characters in the list are

 separated by '-', this is shorthand for the full range of characters

 between those two (inclusive) in the collating sequence, for example,

 "[0-9]" in ASCII matches any decimal digit. It is illegal(!) for two

 ranges to share an endpoint, for example, "a-c-e". Ranges are very

 collating-sequence-dependent, and portable programs should avoid rely?

 ing on them.

 To include a literal ']' in the list, make it the first character (fol?

 lowing a possible '^'). To include a literal '-', make it the first or

 last character, or the second endpoint of a range. To use a literal

 '-' as the first endpoint of a range, enclose it in "[." and ".]" to Page 2/5

 make it a collating element (see below). With the exception of these

 and some combinations using '[' (see next paragraphs), all other spe?

 cial characters, including '\', lose their special significance within

 a bracket expression.

 Within a bracket expression, a collating element (a character, a multi?

 character sequence that collates as if it were a single character, or a

 collating-sequence name for either) enclosed in "[." and ".]" stands

 for the sequence of characters of that collating element. The sequence

 is a single element of the bracket expression's list. A bracket ex?

 pression containing a multicharacter collating element can thus match

 more than one character, for example, if the collating sequence in?

 cludes a "ch" collating element, then the RE "[[.ch.]]*c" matches the

 first five characters of "chchcc".

 Within a bracket expression, a collating element enclosed in "[=" and

 "=]" is an equivalence class, standing for the sequences of characters

 of all collating elements equivalent to that one, including itself.

 (If there are no other equivalent collating elements, the treatment is

 as if the enclosing delimiters were "[." and ".]".) For example, if o

 and ^ are the members of an equivalence class, then "[[=o=]]",

 "[[=^=]]", and "[o^]" are all synonymous. An equivalence class may

 not(!) be an endpoint of a range.

 Within a bracket expression, the name of a character class enclosed in

 "[:" and ":]" stands for the list of all characters belonging to that

 class. Standard character class names are:

 alnum digit punct

 alpha graph space

 blank lower upper

 cntrl print xdigit

 These stand for the character classes defined in wctype(3). A locale

 may provide others. A character class may not be used as an endpoint

 of a range.

 In the event that an RE could match more than one substring of a given

 string, the RE matches the one starting earliest in the string. If the Page 3/5

 RE could match more than one substring starting at that point, it

 matches the longest. Subexpressions also match the longest possible

 substrings, subject to the constraint that the whole match be as long

 as possible, with subexpressions starting earlier in the RE taking pri?

 ority over ones starting later. Note that higher-level subexpressions

 thus take priority over their lower-level component subexpressions.

 Match lengths are measured in characters, not collating elements. A

 null string is considered longer than no match at all. For example,

 "bb*" matches the three middle characters of "abbbc",

 "(wee|week)(knights|nights)" matches all ten characters of "week?

 nights", when "(.*).*" is matched against "abc" the parenthesized sub?

 expression matches all three characters, and when "(a*)*" is matched

 against "bc" both the whole RE and the parenthesized subexpression

 match the null string.

 If case-independent matching is specified, the effect is much as if all

 case distinctions had vanished from the alphabet. When an alphabetic

 that exists in multiple cases appears as an ordinary character outside

 a bracket expression, it is effectively transformed into a bracket ex?

 pression containing both cases, for example, 'x' becomes "[xX]". When

 it appears inside a bracket expression, all case counterparts of it are

 added to the bracket expression, so that, for example, "[x]" becomes

 "[xX]" and "[^x]" becomes "[^xX]".

 No particular limit is imposed on the length of REs(!). Programs in?

 tended to be portable should not employ REs longer than 256 bytes, as

 an implementation can refuse to accept such REs and remain POSIX-com?

 pliant.

 Obsolete ("basic") regular expressions differ in several respects.

 '|', '+', and '?' are ordinary characters and there is no equivalent

 for their functionality. The delimiters for bounds are "\{" and "\}",

 with '{' and '}' by themselves ordinary characters. The parentheses

 for nested subexpressions are "\(" and "\)", with '(' and ')' by them?

 selves ordinary characters. '^' is an ordinary character except at the

 beginning of the RE or(!) the beginning of a parenthesized subexpres? Page 4/5

 sion, '$' is an ordinary character except at the end of the RE or(!)

 the end of a parenthesized subexpression, and '*' is an ordinary char?

 acter if it appears at the beginning of the RE or the beginning of a

 parenthesized subexpression (after a possible leading '^').

 Finally, there is one new type of atom, a back reference: '\' followed

 by a nonzero decimal digit d matches the same sequence of characters

 matched by the dth parenthesized subexpression (numbering subexpres?

 sions by the positions of their opening parentheses, left to right), so

 that, for example, "\([bc]\)\1" matches "bb" or "cc" but not "bc".

BUGS

 Having two kinds of REs is a botch.

 The current POSIX.2 spec says that ')' is an ordinary character in the

 absence of an unmatched '('; this was an unintentional result of a

 wording error, and change is likely. Avoid relying on it.

 Back references are a dreadful botch, posing major problems for effi?

 cient implementations. They are also somewhat vaguely defined (does

 "a\(\(b\)*\2\)*d" match "abbbd"?). Avoid using them.

 POSIX.2's specification of case-independent matching is vague. The

 "one case implies all cases" definition given above is current consen?

 sus among implementors as to the right interpretation.

AUTHOR

 This page was taken from Henry Spencer's regex package.

SEE ALSO

 grep(1), regex(3)

 POSIX.2, section 2.8 (Regular Expression Notation).

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

 2020-08-13 REGEX(7)

Page 5/5

