
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'recv.2' command

$ man recv.2

RECV(2) Linux Programmer's Manual RECV(2)

NAME

 recv, recvfrom, recvmsg - receive a message from a socket

SYNOPSIS

 #include <sys/types.h>

 #include <sys/socket.h>

 ssize_t recv(int sockfd, void *buf, size_t len, int flags);

 ssize_t recvfrom(int sockfd, void *buf, size_t len, int flags,

 struct sockaddr *src_addr, socklen_t *addrlen);

 ssize_t recvmsg(int sockfd, struct msghdr *msg, int flags);

DESCRIPTION

 The recv(), recvfrom(), and recvmsg() calls are used to receive mes?

 sages from a socket. They may be used to receive data on both connec?

 tionless and connection-oriented sockets. This page first describes

 common features of all three system calls, and then describes the dif?

 ferences between the calls.

 The only difference between recv() and read(2) is the presence of

 flags. With a zero flags argument, recv() is generally equivalent to

 read(2) (but see NOTES). Also, the following call

 recv(sockfd, buf, len, flags);

 is equivalent to

 recvfrom(sockfd, buf, len, flags, NULL, NULL);

 All three calls return the length of the message on successful comple? Page 1/9

 tion. If a message is too long to fit in the supplied buffer, excess

 bytes may be discarded depending on the type of socket the message is

 received from.

 If no messages are available at the socket, the receive calls wait for

 a message to arrive, unless the socket is nonblocking (see fcntl(2)),

 in which case the value -1 is returned and the external variable errno

 is set to EAGAIN or EWOULDBLOCK. The receive calls normally return any

 data available, up to the requested amount, rather than waiting for re?

 ceipt of the full amount requested.

 An application can use select(2), poll(2), or epoll(7) to determine

 when more data arrives on a socket.

 The flags argument

 The flags argument is formed by ORing one or more of the following val?

 ues:

 MSG_CMSG_CLOEXEC (recvmsg() only; since Linux 2.6.23)

 Set the close-on-exec flag for the file descriptor received via

 a UNIX domain file descriptor using the SCM_RIGHTS operation

 (described in unix(7)). This flag is useful for the same rea?

 sons as the O_CLOEXEC flag of open(2).

 MSG_DONTWAIT (since Linux 2.2)

 Enables nonblocking operation; if the operation would block, the

 call fails with the error EAGAIN or EWOULDBLOCK. This provides

 similar behavior to setting the O_NONBLOCK flag (via the fc?

 ntl(2) F_SETFL operation), but differs in that MSG_DONTWAIT is a

 per-call option, whereas O_NONBLOCK is a setting on the open

 file description (see open(2)), which will affect all threads in

 the calling process and as well as other processes that hold

 file descriptors referring to the same open file description.

 MSG_ERRQUEUE (since Linux 2.2)

 This flag specifies that queued errors should be received from

 the socket error queue. The error is passed in an ancillary

 message with a type dependent on the protocol (for IPv4

 IP_RECVERR). The user should supply a buffer of sufficient Page 2/9

 size. See cmsg(3) and ip(7) for more information. The payload

 of the original packet that caused the error is passed as normal

 data via msg_iovec. The original destination address of the

 datagram that caused the error is supplied via msg_name.

 The error is supplied in a sock_extended_err structure:

 #define SO_EE_ORIGIN_NONE 0

 #define SO_EE_ORIGIN_LOCAL 1

 #define SO_EE_ORIGIN_ICMP 2

 #define SO_EE_ORIGIN_ICMP6 3

 struct sock_extended_err

 {

 uint32_t ee_errno; /* Error number */

 uint8_t ee_origin; /* Where the error originated */

 uint8_t ee_type; /* Type */

 uint8_t ee_code; /* Code */

 uint8_t ee_pad; /* Padding */

 uint32_t ee_info; /* Additional information */

 uint32_t ee_data; /* Other data */

 /* More data may follow */

 };

 struct sockaddr *SO_EE_OFFENDER(struct sock_extended_err *);

 ee_errno contains the errno number of the queued error. ee_ori?

 gin is the origin code of where the error originated. The other

 fields are protocol-specific. The macro SOCK_EE_OFFENDER re?

 turns a pointer to the address of the network object where the

 error originated from given a pointer to the ancillary message.

 If this address is not known, the sa_family member of the sock?

 addr contains AF_UNSPEC and the other fields of the sockaddr are

 undefined. The payload of the packet that caused the error is

 passed as normal data.

 For local errors, no address is passed (this can be checked with

 the cmsg_len member of the cmsghdr). For error receives, the

 MSG_ERRQUEUE flag is set in the msghdr. After an error has been Page 3/9

 passed, the pending socket error is regenerated based on the

 next queued error and will be passed on the next socket opera?

 tion.

 MSG_OOB

 This flag requests receipt of out-of-band data that would not be

 received in the normal data stream. Some protocols place expe?

 dited data at the head of the normal data queue, and thus this

 flag cannot be used with such protocols.

 MSG_PEEK

 This flag causes the receive operation to return data from the

 beginning of the receive queue without removing that data from

 the queue. Thus, a subsequent receive call will return the same

 data.

 MSG_TRUNC (since Linux 2.2)

 For raw (AF_PACKET), Internet datagram (since Linux

 2.4.27/2.6.8), netlink (since Linux 2.6.22), and UNIX datagram

 (since Linux 3.4) sockets: return the real length of the packet

 or datagram, even when it was longer than the passed buffer.

 For use with Internet stream sockets, see tcp(7).

 MSG_WAITALL (since Linux 2.2)

 This flag requests that the operation block until the full re?

 quest is satisfied. However, the call may still return less

 data than requested if a signal is caught, an error or discon?

 nect occurs, or the next data to be received is of a different

 type than that returned. This flag has no effect for datagram

 sockets.

 recvfrom()

 recvfrom() places the received message into the buffer buf. The caller

 must specify the size of the buffer in len.

 If src_addr is not NULL, and the underlying protocol provides the

 source address of the message, that source address is placed in the

 buffer pointed to by src_addr. In this case, addrlen is a value-result

 argument. Before the call, it should be initialized to the size of the Page 4/9

 buffer associated with src_addr. Upon return, addrlen is updated to

 contain the actual size of the source address. The returned address is

 truncated if the buffer provided is too small; in this case, addrlen

 will return a value greater than was supplied to the call.

 If the caller is not interested in the source address, src_addr and ad?

 drlen should be specified as NULL.

 recv()

 The recv() call is normally used only on a connected socket (see con?

 nect(2)). It is equivalent to the call:

 recvfrom(fd, buf, len, flags, NULL, 0);

 recvmsg()

 The recvmsg() call uses a msghdr structure to minimize the number of

 directly supplied arguments. This structure is defined as follows in

 <sys/socket.h>:

 struct iovec { /* Scatter/gather array items */

 void *iov_base; /* Starting address */

 size_t iov_len; /* Number of bytes to transfer */

 };

 struct msghdr {

 void *msg_name; /* Optional address */

 socklen_t msg_namelen; /* Size of address */

 struct iovec *msg_iov; /* Scatter/gather array */

 size_t msg_iovlen; /* # elements in msg_iov */

 void *msg_control; /* Ancillary data, see below */

 size_t msg_controllen; /* Ancillary data buffer len */

 int msg_flags; /* Flags on received message */

 };

 The msg_name field points to a caller-allocated buffer that is used to

 return the source address if the socket is unconnected. The caller

 should set msg_namelen to the size of this buffer before this call;

 upon return from a successful call, msg_namelen will contain the length

 of the returned address. If the application does not need to know the

 source address, msg_name can be specified as NULL. Page 5/9

 The fields msg_iov and msg_iovlen describe scatter-gather locations, as

 discussed in readv(2).

 The field msg_control, which has length msg_controllen, points to a

 buffer for other protocol control-related messages or miscellaneous an?

 cillary data. When recvmsg() is called, msg_controllen should contain

 the length of the available buffer in msg_control; upon return from a

 successful call it will contain the length of the control message se?

 quence.

 The messages are of the form:

 struct cmsghdr {

 size_t cmsg_len; /* Data byte count, including header

 (type is socklen_t in POSIX) */

 int cmsg_level; /* Originating protocol */

 int cmsg_type; /* Protocol-specific type */

 /* followed by

 unsigned char cmsg_data[]; */

 };

 Ancillary data should be accessed only by the macros defined in

 cmsg(3).

 As an example, Linux uses this ancillary data mechanism to pass ex?

 tended errors, IP options, or file descriptors over UNIX domain sock?

 ets. For further information on the use of ancillary data in various

 socket domains, see unix(7) and ip(7).

 The msg_flags field in the msghdr is set on return of recvmsg(). It

 can contain several flags:

 MSG_EOR

 indicates end-of-record; the data returned completed a record

 (generally used with sockets of type SOCK_SEQPACKET).

 MSG_TRUNC

 indicates that the trailing portion of a datagram was discarded

 because the datagram was larger than the buffer supplied.

 MSG_CTRUNC

 indicates that some control data was discarded due to lack of Page 6/9

 space in the buffer for ancillary data.

 MSG_OOB

 is returned to indicate that expedited or out-of-band data was

 received.

 MSG_ERRQUEUE

 indicates that no data was received but an extended error from

 the socket error queue.

RETURN VALUE

 These calls return the number of bytes received, or -1 if an error oc?

 curred. In the event of an error, errno is set to indicate the error.

 When a stream socket peer has performed an orderly shutdown, the return

 value will be 0 (the traditional "end-of-file" return).

 Datagram sockets in various domains (e.g., the UNIX and Internet do?

 mains) permit zero-length datagrams. When such a datagram is received,

 the return value is 0.

 The value 0 may also be returned if the requested number of bytes to

 receive from a stream socket was 0.

ERRORS

 These are some standard errors generated by the socket layer. Addi?

 tional errors may be generated and returned from the underlying proto?

 col modules; see their manual pages.

 EAGAIN or EWOULDBLOCK

 The socket is marked nonblocking and the receive operation would

 block, or a receive timeout had been set and the timeout expired

 before data was received. POSIX.1 allows either error to be re?

 turned for this case, and does not require these constants to

 have the same value, so a portable application should check for

 both possibilities.

 EBADF The argument sockfd is an invalid file descriptor.

 ECONNREFUSED

 A remote host refused to allow the network connection (typically

 because it is not running the requested service).

 EFAULT The receive buffer pointer(s) point outside the process's ad? Page 7/9

 dress space.

 EINTR The receive was interrupted by delivery of a signal before any

 data was available; see signal(7).

 EINVAL Invalid argument passed.

 ENOMEM Could not allocate memory for recvmsg().

 ENOTCONN

 The socket is associated with a connection-oriented protocol and

 has not been connected (see connect(2) and accept(2)).

 ENOTSOCK

 The file descriptor sockfd does not refer to a socket.

CONFORMING TO

 POSIX.1-2001, POSIX.1-2008, 4.4BSD (these interfaces first appeared in

 4.2BSD).

 POSIX.1 describes only the MSG_OOB, MSG_PEEK, and MSG_WAITALL flags.

NOTES

 If a zero-length datagram is pending, read(2) and recv() with a flags

 argument of zero provide different behavior. In this circumstance,

 read(2) has no effect (the datagram remains pending), while recv() con?

 sumes the pending datagram.

 The socklen_t type was invented by POSIX. See also accept(2).

 According to POSIX.1, the msg_controllen field of the msghdr structure

 should be typed as socklen_t, and the msg_iovlen field should be typed

 as int, but glibc currently types both as size_t.

 See recvmmsg(2) for information about a Linux-specific system call that

 can be used to receive multiple datagrams in a single call.

EXAMPLES

 An example of the use of recvfrom() is shown in getaddrinfo(3).

SEE ALSO

 fcntl(2), getsockopt(2), read(2), recvmmsg(2), select(2), shutdown(2),

 socket(2), cmsg(3), sockatmark(3), ip(7), ipv6(7), socket(7), tcp(7),

 udp(7), unix(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A Page 8/9

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-11-01 RECV(2)

Page 9/9

