
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'pthread_spin_init.3' command

$ man pthread_spin_init.3

PTHREAD_SPIN_INIT(3) Linux Programmer's Manual PTHREAD_SPIN_INIT(3)

NAME

 pthread_spin_init, pthread_spin_destroy - initialize or destroy a spin

 lock

SYNOPSIS

 #include <pthread.h>

 int pthread_spin_init(pthread_spinlock_t *lock, int pshared);

 int pthread_spin_destroy(pthread_spinlock_t *lock);

 Compile and link with -pthread.

 Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

 pthread_spin_init(), pthread_spin_destroy():

 _POSIX_C_SOURCE >= 200112L

DESCRIPTION

 General note: Most programs should use mutexes instead of spin locks.

 Spin locks are primarily useful in conjunction with real-time schedul?

 ing policies. See NOTES.

 The pthread_spin_init() function allocates any resources required for

 the use of the spin lock referred to by lock and initializes the lock

 to be in the unlocked state. The pshared argument must have one of the

 following values:

 PTHREAD_PROCESS_PRIVATE

 The spin lock is to be operated on only by threads in the same

 process as the thread that calls pthread_spin_init(). (Attempt? Page 1/3

 ing to share the spin lock between processes results in unde?

 fined behavior.)

 PTHREAD_PROCESS_SHARED

 The spin lock may be operated on by any thread in any process

 that has access to the memory containing the lock (i.e., the

 lock may be in a shared memory object that is shared among mul?

 tiple processes).

 Calling pthread_spin_init() on a spin lock that has already been ini?

 tialized results in undefined behavior.

 The pthread_spin_destroy() function destroys a previously initialized

 spin lock, freeing any resources that were allocated for that lock.

 Destroying a spin lock that has not been previously been initialized or

 destroying a spin lock while another thread holds the lock results in

 undefined behavior.

 Once a spin lock has been destroyed, performing any operation on the

 lock other than once more initializing it with pthread_spin_init() re?

 sults in undefined behavior.

 The result of performing operations such as pthread_spin_lock(3),

 pthread_spin_unlock(3), and pthread_spin_destroy() on copies of the ob?

 ject referred to by lock is undefined.

RETURN VALUE

 On success, there functions return zero. On failure, they return an

 error number. In the event that pthread_spin_init() fails, the lock is

 not initialized.

ERRORS

 pthread_spin_init() may fail with the following errors:

 EAGAIN The system has insufficient resources to initialize a new spin

 lock.

 ENOMEM Insufficient memory to initialize the spin lock.

VERSIONS

 These functions first appeared in glibc in version 2.2.

CONFORMING TO

 POSIX.1-2001. Page 2/3

 Support for process-shared spin locks is a POSIX option. The option is

 supported in the glibc implementation.

NOTES

 Spin locks should be employed in conjunction with real-time scheduling

 policies (SCHED_FIFO, or possibly SCHED_RR). Use of spin locks with

 nondeterministic scheduling policies such as SCHED_OTHER probably indi?

 cates a design mistake. The problem is that if a thread operating un?

 der such a policy is scheduled off the CPU while it holds a spin lock,

 then other threads will waste time spinning on the lock until the lock

 holder is once more rescheduled and releases the lock.

 If threads create a deadlock situation while employing spin locks,

 those threads will spin forever consuming CPU time.

 User-space spin locks are not applicable as a general locking solution.

 They are, by definition, prone to priority inversion and unbounded spin

 times. A programmer using spin locks must be exceptionally careful not

 only in the code, but also in terms of system configuration, thread

 placement, and priority assignment.

SEE ALSO

 pthread_mutex_init(3), pthread_mutex_lock(3), pthread_spin_lock(3),

 pthread_spin_unlock(3), pthreads(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-06-09 PTHREAD_SPIN_INIT(3)

Page 3/3

