
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'pthread_create.3' command

$ man pthread_create.3

PTHREAD_CREATE(3) Linux Programmer's Manual PTHREAD_CREATE(3)

NAME

 pthread_create - create a new thread

SYNOPSIS

 #include <pthread.h>

 int pthread_create(pthread_t *thread, const pthread_attr_t *attr,

 void *(*start_routine) (void *), void *arg);

 Compile and link with -pthread.

DESCRIPTION

 The pthread_create() function starts a new thread in the calling

 process. The new thread starts execution by invoking start_routine();

 arg is passed as the sole argument of start_routine().

 The new thread terminates in one of the following ways:

 * It calls pthread_exit(3), specifying an exit status value that is

 available to another thread in the same process that calls

 pthread_join(3).

 * It returns from start_routine(). This is equivalent to calling

 pthread_exit(3) with the value supplied in the return statement.

 * It is canceled (see pthread_cancel(3)).

 * Any of the threads in the process calls exit(3), or the main thread

 performs a return from main(). This causes the termination of all

 threads in the process.

 The attr argument points to a pthread_attr_t structure whose contents Page 1/8

 are used at thread creation time to determine attributes for the new

 thread; this structure is initialized using pthread_attr_init(3) and

 related functions. If attr is NULL, then the thread is created with

 default attributes.

 Before returning, a successful call to pthread_create() stores the ID

 of the new thread in the buffer pointed to by thread; this identifier

 is used to refer to the thread in subsequent calls to other pthreads

 functions.

 The new thread inherits a copy of the creating thread's signal mask

 (pthread_sigmask(3)). The set of pending signals for the new thread is

 empty (sigpending(2)). The new thread does not inherit the creating

 thread's alternate signal stack (sigaltstack(2)).

 The new thread inherits the calling thread's floating-point environment

 (fenv(3)).

 The initial value of the new thread's CPU-time clock is 0 (see

 pthread_getcpuclockid(3)).

 Linux-specific details

 The new thread inherits copies of the calling thread's capability sets

 (see capabilities(7)) and CPU affinity mask (see sched_setaffinity(2)).

RETURN VALUE

 On success, pthread_create() returns 0; on error, it returns an error

 number, and the contents of *thread are undefined.

ERRORS

 EAGAIN Insufficient resources to create another thread.

 EAGAIN A system-imposed limit on the number of threads was encountered.

 There are a number of limits that may trigger this error: the

 RLIMIT_NPROC soft resource limit (set via setrlimit(2)), which

 limits the number of processes and threads for a real user ID,

 was reached; the kernel's system-wide limit on the number of

 processes and threads, /proc/sys/kernel/threads-max, was reached

 (see proc(5)); or the maximum number of PIDs, /proc/sys/ker?

 nel/pid_max, was reached (see proc(5)).

 EINVAL Invalid settings in attr. Page 2/8

 EPERM No permission to set the scheduling policy and parameters speci?

 fied in attr.

ATTRIBUTES

 For an explanation of the terms used in this section, see at?

 tributes(7).

 ???

 ?Interface ? Attribute ? Value ?

 ???

 ?pthread_create() ? Thread safety ? MT-Safe ?

 ???

CONFORMING TO

 POSIX.1-2001, POSIX.1-2008.

NOTES

 See pthread_self(3) for further information on the thread ID returned

 in *thread by pthread_create(). Unless real-time scheduling policies

 are being employed, after a call to pthread_create(), it is indetermi?

 nate which thread?the caller or the new thread?will next execute.

 A thread may either be joinable or detached. If a thread is joinable,

 then another thread can call pthread_join(3) to wait for the thread to

 terminate and fetch its exit status. Only when a terminated joinable

 thread has been joined are the last of its resources released back to

 the system. When a detached thread terminates, its resources are auto?

 matically released back to the system: it is not possible to join with

 the thread in order to obtain its exit status. Making a thread de?

 tached is useful for some types of daemon threads whose exit status the

 application does not need to care about. By default, a new thread is

 created in a joinable state, unless attr was set to create the thread

 in a detached state (using pthread_attr_setdetachstate(3)).

 Under the NPTL threading implementation, if the RLIMIT_STACK soft re?

 source limit at the time the program started has any value other than

 "unlimited", then it determines the default stack size of new threads.

 Using pthread_attr_setstacksize(3), the stack size attribute can be ex?

 plicitly set in the attr argument used to create a thread, in order to Page 3/8

 obtain a stack size other than the default. If the RLIMIT_STACK re?

 source limit is set to "unlimited", a per-architecture value is used

 for the stack size. Here is the value for a few architectures:

 ????????????????????????????????????

 ?Architecture ? Default stack size ?

 ????????????????????????????????????

 ?i386 ? 2 MB ?

 ????????????????????????????????????

 ?IA-64 ? 32 MB ?

 ????????????????????????????????????

 ?PowerPC ? 4 MB ?

 ????????????????????????????????????

 ?S/390 ? 2 MB ?

 ????????????????????????????????????

 ?Sparc-32 ? 2 MB ?

 ????????????????????????????????????

 ?Sparc-64 ? 4 MB ?

 ????????????????????????????????????

 ?x86_64 ? 2 MB ?

 ????????????????????????????????????

BUGS

 In the obsolete LinuxThreads implementation, each of the threads in a

 process has a different process ID. This is in violation of the POSIX

 threads specification, and is the source of many other nonconformances

 to the standard; see pthreads(7).

EXAMPLES

 The program below demonstrates the use of pthread_create(), as well as

 a number of other functions in the pthreads API.

 In the following run, on a system providing the NPTL threading imple?

 mentation, the stack size defaults to the value given by the "stack

 size" resource limit:

 $ ulimit -s

 8192 # The stack size limit is 8 MB (0x800000 bytes) Page 4/8

 $./a.out hola salut servus

 Thread 1: top of stack near 0xb7dd03b8; argv_string=hola

 Thread 2: top of stack near 0xb75cf3b8; argv_string=salut

 Thread 3: top of stack near 0xb6dce3b8; argv_string=servus

 Joined with thread 1; returned value was HOLA

 Joined with thread 2; returned value was SALUT

 Joined with thread 3; returned value was SERVUS

 In the next run, the program explicitly sets a stack size of 1 MB (us?

 ing pthread_attr_setstacksize(3)) for the created threads:

 $./a.out -s 0x100000 hola salut servus

 Thread 1: top of stack near 0xb7d723b8; argv_string=hola

 Thread 2: top of stack near 0xb7c713b8; argv_string=salut

 Thread 3: top of stack near 0xb7b703b8; argv_string=servus

 Joined with thread 1; returned value was HOLA

 Joined with thread 2; returned value was SALUT

 Joined with thread 3; returned value was SERVUS

 Program source

 #include <pthread.h>

 #include <string.h>

 #include <stdio.h>

 #include <stdlib.h>

 #include <unistd.h>

 #include <errno.h>

 #include <ctype.h>

 #define handle_error_en(en, msg) \

 do { errno = en; perror(msg); exit(EXIT_FAILURE); } while (0)

 #define handle_error(msg) \

 do { perror(msg); exit(EXIT_FAILURE); } while (0)

 struct thread_info { /* Used as argument to thread_start() */

 pthread_t thread_id; /* ID returned by pthread_create() */

 int thread_num; /* Application-defined thread # */

 char *argv_string; /* From command-line argument */

 }; Page 5/8

 /* Thread start function: display address near top of our stack,

 and return upper-cased copy of argv_string */

 static void *

 thread_start(void *arg)

 {

 struct thread_info *tinfo = arg;

 char *uargv;

 printf("Thread %d: top of stack near %p; argv_string=%s\n",

 tinfo->thread_num, &p, tinfo->argv_string);

 uargv = strdup(tinfo->argv_string);

 if (uargv == NULL)

 handle_error("strdup");

 for (char *p = uargv; *p != '\0'; p++)

 *p = toupper(*p);

 return uargv;

 }

 int

 main(int argc, char *argv[])

 {

 int s, opt, num_threads;

 pthread_attr_t attr;

 size_t stack_size;

 void *res;

 /* The "-s" option specifies a stack size for our threads */

 stack_size = -1;

 while ((opt = getopt(argc, argv, "s:")) != -1) {

 switch (opt) {

 case 's':

 stack_size = strtoul(optarg, NULL, 0);

 break;

 default:

 fprintf(stderr, "Usage: %s [-s stack-size] arg...\n",

 argv[0]); Page 6/8

 exit(EXIT_FAILURE);

 }

 }

 num_threads = argc - optind;

 /* Initialize thread creation attributes */

 s = pthread_attr_init(&attr);

 if (s != 0)

 handle_error_en(s, "pthread_attr_init");

 if (stack_size > 0) {

 s = pthread_attr_setstacksize(&attr, stack_size);

 if (s != 0)

 handle_error_en(s, "pthread_attr_setstacksize");

 }

 /* Allocate memory for pthread_create() arguments */

 struct thread_info *tinfo = calloc(num_threads, sizeof(*tinfo));

 if (tinfo == NULL)

 handle_error("calloc");

 /* Create one thread for each command-line argument */

 for (int tnum = 0; tnum < num_threads; tnum++) {

 tinfo[tnum].thread_num = tnum + 1;

 tinfo[tnum].argv_string = argv[optind + tnum];

 /* The pthread_create() call stores the thread ID into

 corresponding element of tinfo[] */

 s = pthread_create(&tinfo[tnum].thread_id, &attr,

 &thread_start, &tinfo[tnum]);

 if (s != 0)

 handle_error_en(s, "pthread_create");

 }

 /* Destroy the thread attributes object, since it is no

 longer needed */

 s = pthread_attr_destroy(&attr);

 if (s != 0)

 handle_error_en(s, "pthread_attr_destroy"); Page 7/8

 /* Now join with each thread, and display its returned value */

 for (int tnum = 0; tnum < num_threads; tnum++) {

 s = pthread_join(tinfo[tnum].thread_id, &res);

 if (s != 0)

 handle_error_en(s, "pthread_join");

 printf("Joined with thread %d; returned value was %s\n",

 tinfo[tnum].thread_num, (char *) res);

 free(res); /* Free memory allocated by thread */

 }

 free(tinfo);

 exit(EXIT_SUCCESS);

 }

SEE ALSO

 getrlimit(2), pthread_attr_init(3), pthread_cancel(3),

 pthread_detach(3), pthread_equal(3), pthread_exit(3),

 pthread_getattr_np(3), pthread_join(3), pthread_self(3),

 pthread_setattr_default_np(3), pthreads(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-11-01 PTHREAD_CREATE(3)

Page 8/8

