
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'pthread_cleanup_push.3' command

$ man pthread_cleanup_push.3

PTHREAD_CLEANUP_PUSH(3) Linux Programmer's Manual PTHREAD_CLEANUP_PUSH(3)

NAME

 pthread_cleanup_push, pthread_cleanup_pop - push and pop thread cancel?

 lation clean-up handlers

SYNOPSIS

 #include <pthread.h>

 void pthread_cleanup_push(void (*routine)(void *),

 void *arg);

 void pthread_cleanup_pop(int execute);

 Compile and link with -pthread.

DESCRIPTION

 These functions manipulate the calling thread's stack of thread-cancel?

 lation clean-up handlers. A clean-up handler is a function that is au?

 tomatically executed when a thread is canceled (or in various other

 circumstances described below); it might, for example, unlock a mutex

 so that it becomes available to other threads in the process.

 The pthread_cleanup_push() function pushes routine onto the top of the

 stack of clean-up handlers. When routine is later invoked, it will be

 given arg as its argument.

 The pthread_cleanup_pop() function removes the routine at the top of

 the stack of clean-up handlers, and optionally executes it if execute

 is nonzero.

 A cancellation clean-up handler is popped from the stack and executed Page 1/6

 in the following circumstances:

 1. When a thread is canceled, all of the stacked clean-up handlers are

 popped and executed in the reverse of the order in which they were

 pushed onto the stack.

 2. When a thread terminates by calling pthread_exit(3), all clean-up

 handlers are executed as described in the preceding point. (Clean-

 up handlers are not called if the thread terminates by performing a

 return from the thread start function.)

 3. When a thread calls pthread_cleanup_pop() with a nonzero execute ar?

 gument, the top-most clean-up handler is popped and executed.

 POSIX.1 permits pthread_cleanup_push() and pthread_cleanup_pop() to be

 implemented as macros that expand to text containing '{' and '}', re?

 spectively. For this reason, the caller must ensure that calls to

 these functions are paired within the same function, and at the same

 lexical nesting level. (In other words, a clean-up handler is estab?

 lished only during the execution of a specified section of code.)

 Calling longjmp(3) (siglongjmp(3)) produces undefined results if any

 call has been made to pthread_cleanup_push() or pthread_cleanup_pop()

 without the matching call of the pair since the jump buffer was filled

 by setjmp(3) (sigsetjmp(3)). Likewise, calling longjmp(3) (sig?

 longjmp(3)) from inside a clean-up handler produces undefined results

 unless the jump buffer was also filled by setjmp(3) (sigsetjmp(3)) in?

 side the handler.

RETURN VALUE

 These functions do not return a value.

ERRORS

 There are no errors.

ATTRIBUTES

 For an explanation of the terms used in this section, see at?

 tributes(7).

 ??

 ?Interface ? Attribute ? Value ?

 ?? Page 2/6

 ?pthread_cleanup_push(), ? Thread safety ? MT-Safe ?

 ?pthread_cleanup_pop() ? ? ?

 ??

CONFORMING TO

 POSIX.1-2001, POSIX.1-2008.

NOTES

 On Linux, the pthread_cleanup_push() and pthread_cleanup_pop() func?

 tions are implemented as macros that expand to text containing '{' and

 '}', respectively. This means that variables declared within the scope

 of paired calls to these functions will be visible within only that

 scope.

 POSIX.1 says that the effect of using return, break, continue, or goto

 to prematurely leave a block bracketed pthread_cleanup_push() and

 pthread_cleanup_pop() is undefined. Portable applications should avoid

 doing this.

EXAMPLES

 The program below provides a simple example of the use of the functions

 described in this page. The program creates a thread that executes a

 loop bracketed by pthread_cleanup_push() and pthread_cleanup_pop().

 This loop increments a global variable, cnt, once each second. Depend?

 ing on what command-line arguments are supplied, the main thread sends

 the other thread a cancellation request, or sets a global variable that

 causes the other thread to exit its loop and terminate normally (by do?

 ing a return).

 In the following shell session, the main thread sends a cancellation

 request to the other thread:

 $./a.out

 New thread started

 cnt = 0

 cnt = 1

 Canceling thread

 Called clean-up handler

 Thread was canceled; cnt = 0 Page 3/6

 From the above, we see that the thread was canceled, and that the can?

 cellation clean-up handler was called and it reset the value of the

 global variable cnt to 0.

 In the next run, the main program sets a global variable that causes

 other thread to terminate normally:

 $./a.out x

 New thread started

 cnt = 0

 cnt = 1

 Thread terminated normally; cnt = 2

 From the above, we see that the clean-up handler was not executed (be?

 cause cleanup_pop_arg was 0), and therefore the value of cnt was not

 reset.

 In the next run, the main program sets a global variable that causes

 the other thread to terminate normally, and supplies a nonzero value

 for cleanup_pop_arg:

 $./a.out x 1

 New thread started

 cnt = 0

 cnt = 1

 Called clean-up handler

 Thread terminated normally; cnt = 0

 In the above, we see that although the thread was not canceled, the

 clean-up handler was executed, because the argument given to

 pthread_cleanup_pop() was nonzero.

 Program source

 #include <pthread.h>

 #include <sys/types.h>

 #include <stdio.h>

 #include <stdlib.h>

 #include <unistd.h>

 #include <errno.h>

 #define handle_error_en(en, msg) \ Page 4/6

 do { errno = en; perror(msg); exit(EXIT_FAILURE); } while (0)

 static int done = 0;

 static int cleanup_pop_arg = 0;

 static int cnt = 0;

 static void

 cleanup_handler(void *arg)

 {

 printf("Called clean-up handler\n");

 cnt = 0;

 }

 static void *

 thread_start(void *arg)

 {

 time_t start, curr;

 printf("New thread started\n");

 pthread_cleanup_push(cleanup_handler, NULL);

 curr = start = time(NULL);

 while (!done) {

 pthread_testcancel(); /* A cancellation point */

 if (curr < time(NULL)) {

 curr = time(NULL);

 printf("cnt = %d\n", cnt); /* A cancellation point */

 cnt++;

 }

 }

 pthread_cleanup_pop(cleanup_pop_arg);

 return NULL;

 }

 int

 main(int argc, char *argv[])

 {

 pthread_t thr;

 int s; Page 5/6

 void *res;

 s = pthread_create(&thr, NULL, thread_start, NULL);

 if (s != 0)

 handle_error_en(s, "pthread_create");

 sleep(2); /* Allow new thread to run a while */

 if (argc > 1) {

 if (argc > 2)

 cleanup_pop_arg = atoi(argv[2]);

 done = 1;

 } else {

 printf("Canceling thread\n");

 s = pthread_cancel(thr);

 if (s != 0)

 handle_error_en(s, "pthread_cancel");

 }

 s = pthread_join(thr, &res);

 if (s != 0)

 handle_error_en(s, "pthread_join");

 if (res == PTHREAD_CANCELED)

 printf("Thread was canceled; cnt = %d\n", cnt);

 else

 printf("Thread terminated normally; cnt = %d\n", cnt);

 exit(EXIT_SUCCESS);

 }

SEE ALSO

 pthread_cancel(3), pthread_cleanup_push_defer_np(3), pthread_setcancel?

 state(3), pthread_testcancel(3), pthreads(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-06-09 PTHREAD_CLEANUP_PUSH(3) Page 6/6

