
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'pthread_attr_getguardsize.3' command

$ man pthread_attr_getguardsize.3

PTHREAD_ATTR_SETGUARDSIZE(3Linux Programmer's ManuPTHREAD_ATTR_SETGUARDSIZE(3)

NAME

 pthread_attr_setguardsize, pthread_attr_getguardsize - set/get guard

 size attribute in thread attributes object

SYNOPSIS

 #include <pthread.h>

 int pthread_attr_setguardsize(pthread_attr_t *attr, size_t guardsize);

 int pthread_attr_getguardsize(const pthread_attr_t *attr,

 size_t *guardsize);

 Compile and link with -pthread.

DESCRIPTION

 The pthread_attr_setguardsize() function sets the guard size attribute

 of the thread attributes object referred to by attr to the value speci?

 fied in guardsize.

 If guardsize is greater than 0, then for each new thread created using

 attr the system allocates an additional region of at least guardsize

 bytes at the end of the thread's stack to act as the guard area for the

 stack (but see BUGS).

 If guardsize is 0, then new threads created with attr will not have a

 guard area.

 The default guard size is the same as the system page size.

 If the stack address attribute has been set in attr (using

 pthread_attr_setstack(3) or pthread_attr_setstackaddr(3)), meaning that Page 1/3

 the caller is allocating the thread's stack, then the guard size attri?

 bute is ignored (i.e., no guard area is created by the system): it is

 the application's responsibility to handle stack overflow (perhaps by

 using mprotect(2) to manually define a guard area at the end of the

 stack that it has allocated).

 The pthread_attr_getguardsize() function returns the guard size attri?

 bute of the thread attributes object referred to by attr in the buffer

 pointed to by guardsize.

RETURN VALUE

 On success, these functions return 0; on error, they return a nonzero

 error number.

ERRORS

 POSIX.1 documents an EINVAL error if attr or guardsize is invalid. On

 Linux these functions always succeed (but portable and future-proof ap?

 plications should nevertheless handle a possible error return).

VERSIONS

 These functions are provided by glibc since version 2.1.

ATTRIBUTES

 For an explanation of the terms used in this section, see at?

 tributes(7).

 ???

 ?Interface ? Attribute ? Value ?

 ???

 ?pthread_attr_setguardsize(), ? Thread safety ? MT-Safe ?

 ?pthread_attr_getguardsize() ? ? ?

 ???

CONFORMING TO

 POSIX.1-2001, POSIX.1-2008.

NOTES

 A guard area consists of virtual memory pages that are protected to

 prevent read and write access. If a thread overflows its stack into

 the guard area, then, on most hard architectures, it receives a SIGSEGV

 signal, thus notifying it of the overflow. Guard areas start on page Page 2/3

 boundaries, and the guard size is internally rounded up to the system

 page size when creating a thread. (Nevertheless, pthread_attr_get?

 guardsize() returns the guard size that was set by pthread_attr_set?

 guardsize().)

 Setting a guard size of 0 may be useful to save memory in an applica?

 tion that creates many threads and knows that stack overflow can never

 occur.

 Choosing a guard size larger than the default size may be necessary for

 detecting stack overflows if a thread allocates large data structures

 on the stack.

BUGS

 As at glibc 2.8, the NPTL threading implementation includes the guard

 area within the stack size allocation, rather than allocating extra

 space at the end of the stack, as POSIX.1 requires. (This can result

 in an EINVAL error from pthread_create(3) if the guard size value is

 too large, leaving no space for the actual stack.)

 The obsolete LinuxThreads implementation did the right thing, allocat?

 ing extra space at the end of the stack for the guard area.

EXAMPLES

 See pthread_getattr_np(3).

SEE ALSO

 mmap(2), mprotect(2), pthread_attr_init(3), pthread_attr_setstack(3),

 pthread_attr_setstacksize(3), pthread_create(3), pthreads(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at

 https://www.kernel.org/doc/man-pages/.

Linux 2020-06-09 PTHREAD_ATTR_SETGUARDSIZE(3)

Page 3/3

