
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'pthread_atfork.3' command

$ man pthread_atfork.3

PTHREAD_ATFORK(3) Linux Programmer's Manual PTHREAD_ATFORK(3)

NAME

 pthread_atfork - register fork handlers

SYNOPSIS

 #include <pthread.h>

 int pthread_atfork(void (*prepare)(void), void (*parent)(void),

 void (*child)(void));

 Link with -pthread.

DESCRIPTION

 The pthread_atfork() function registers fork handlers that are to be

 executed when fork(2) is called by this thread. The handlers are exe?

 cuted in the context of the thread that calls fork(2).

 Three kinds of handler can be registered:

 * prepare specifies a handler that is executed before fork(2) process?

 ing starts.

 * parent specifies a handler that is executed in the parent process

 after fork(2) processing completes.

 * child specifies a handler that is executed in the child process af?

 ter fork(2) processing completes.

 Any of the three arguments may be NULL if no handler is needed in the

 corresponding phase of fork(2) processing.

RETURN VALUE

 On success, pthread_atfork() returns zero. On error, it returns an er? Page 1/3

 ror number. pthread_atfork() may be called multiple times by a thread,

 to register multiple handlers for each phase. The handlers for each

 phase are called in a specified order: the prepare handlers are called

 in reverse order of registration; the parent and child handlers are

 called in the order of registration.

ERRORS

 ENOMEM Could not allocate memory to record the form handler entry.

CONFORMING TO

 POSIX.1-2001, POSIX.1-2008.

NOTES

 When fork(2) is called in a multithreaded process, only the calling

 thread is duplicated in the child process. The original intention of

 pthread_atfork() was to allow the calling thread to be returned to a

 consistent state. For example, at the time of the call to fork(2),

 other threads may have locked mutexes that are visible in the user-

 space memory duplicated in the child. Such mutexes would never be un?

 locked, since the threads that placed the locks are not duplicated in

 the child. The intent of pthread_atfork() was to provide a mechanism

 whereby the application (or a library) could ensure that mutexes and

 other process and thread state would be restored to a consistent state.

 In practice, this task is generally too difficult to be practicable.

 After a fork(2) in a multithreaded process returns in the child, the

 child should call only async-signal-safe functions (see sig?

 nal-safety(7)) until such time as it calls execve(2) to execute a new

 program.

 POSIX.1 specifies that pthread_atfork() shall not fail with the error

 EINTR.

SEE ALSO

 fork(2), atexit(3), pthreads(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A

 description of the project, information about reporting bugs, and the

 latest version of this page, can be found at Page 2/3

 https://www.kernel.org/doc/man-pages/.

Linux 2020-08-13 PTHREAD_ATFORK(3)

Page 3/3

