
Red Hat Enterprise Linux Release 9.2 Manual Pages on 'preconv.1' command

$ man preconv.1

PRECONV(1) General Commands Manual PRECONV(1)

NAME

 preconv - convert encoding of input files to something GNU troff under?

 stands

SYNOPSIS

 preconv [-dr] [-D default_encoding] [-e encoding] [file ...]

 preconv -h

 preconv --help

 preconv -v

 preconv --version

DESCRIPTION

 preconv reads files and converts its encoding(s) to a form GNU troff(1)

 can process, sending the data to standard output. Currently, this

 means ASCII characters and ?\[uXXXX]? entities, where ?XXXX? is a hexa?

 decimal number with four to six digits, representing a Unicode input

 code. Normally, preconv should be invoked with the -k and -K options

 of groff.

OPTIONS

 Whitespace is permitted between a command-line option and its argument.

 -d Emit debugging messages to standard error (mainly the used en?

 coding).

 -Dencoding

 Specify default encoding if everything fails (see below). Page 1/4

 -eencoding

 Specify input encoding explicitly, overriding all other methods.

 This corresponds to groff's -Kencoding option. Without this

 switch, preconv uses the algorithm described below to select the

 input encoding.

 --help

 -h Print a help message and exit.

 -r Do not add .lf requests.

 --version

 -v Print the version number and exit.

USAGE

 preconv tries to find the input encoding with the following algorithm.

 1. If the input encoding has been explicitly specified with option

 -e, use it.

 2. Otherwise, check whether the input starts with a Byte Order Mark

 (BOM, see below). If found, use it.

 3. Otherwise, check whether there is a known coding tag (see below)

 in either the first or second input line. If found, use it.

 4 Finally, if the uchardet library (an encoding detector library

 available on most major distributions) is available on the sys?

 tem, use it to try to detect the encoding of the file.

 5. If everything fails, use a default encoding as given with option

 -D, by the current locale, or ?latin1? if the locale is set to

 ?C?, ?POSIX?, or empty (in that order).

 Note that the groff program supports a GROFF_ENCODING environment vari?

 able which is eventually expanded to option -k.

 Byte Order Mark

 The Unicode Standard defines character U+FEFF as the Byte Order Mark

 (BOM). On the other hand, value U+FFFE is guaranteed not be a Unicode

 character at all. This allows detection of the byte order within the

 data stream (either big-endian or little-endian), and the MIME encod?

 ings ?UTF-16? and ?UTF-32? mandate that the data stream starts with

 U+FEFF. Similarly, the data stream encoded as ?UTF-8? might start with Page 2/4

 a BOM (to ease the conversion from and to UTF-16 and UTF-32). In all

 cases, the byte order mark is not part of the data but part of the en?

 coding protocol; in other words, preconv's output doesn't contain it.

 Note that U+FEFF not at the start of the input data actually is emit?

 ted; it has then the meaning of a ?zero width no-break space? character

 ? something not needed normally in groff.

 Coding Tags

 Editors which support more than a single character encoding need tags

 within the input files to mark the file's encoding. While it is possi?

 ble to guess the right input encoding with the help of heuristic algo?

 rithms for data which represents a greater amount of a natural lan?

 guage, it is still just a guess. Additionally, all algorithms fail

 easily for input which is either too short or doesn't represent a natu?

 ral language.

 For these reasons, preconv supports the coding tag convention (with

 some restrictions) as used by GNU Emacs and XEmacs (and probably other

 programs too).

 Coding tags in GNU Emacs and XEmacs are stored in so-called File Vari?

 ables. preconv recognizes the following syntax form which must be put

 into a troff comment in the first or second line.

 -*- tag1: value1; tag2: value2; ... -*-

 The only relevant tag for preconv is ?coding? which can take the values

 listed below. Here an example line which tells Emacs to edit a file in

 troff mode, and to use latin2 as its encoding.

 .\" -*- mode: troff; coding: latin-2 -*-

 The following list gives all MIME coding tags (either lowercase or up?

 percase) supported by preconv; this list is hard-coded in the source.

 big5, cp1047, euc-jp, euc-kr, gb2312, iso-8859-1, iso-8859-2,

 iso-8859-5, iso-8859-7, iso-8859-9, iso-8859-13, iso-8859-15,

 koi8-r, us-ascii, utf-8, utf-16, utf-16be, utf-16le

 In addition, the following hard-coded list of other tags is recognized

 which eventually map to values from the list above.

 ascii, chinese-big5, chinese-euc, chinese-iso-8bit, cn-big5, Page 3/4

 cn-gb, cn-gb-2312, cp878, csascii, csisolatin1,

 cyrillic-iso-8bit, cyrillic-koi8, euc-china, euc-cn, euc-japan,

 euc-japan-1990, euc-korea, greek-iso-8bit, iso-10646/utf8,

 iso-10646/utf-8, iso-latin-1, iso-latin-2, iso-latin-5,

 iso-latin-7, iso-latin-9, japanese-euc, japanese-iso-8bit, jis8,

 koi8, korean-euc, korean-iso-8bit, latin-0, latin1, latin-1,

 latin-2, latin-5, latin-7, latin-9, mule-utf-8, mule-utf-16,

 mule-utf-16be, mule-utf-16-be, mule-utf-16be-with-signature,

 mule-utf-16le, mule-utf-16-le, mule-utf-16le-with-signature,

 utf8, utf-16-be, utf-16-be-with-signature,

 utf-16be-with-signature, utf-16-le, utf-16-le-with-signature,

 utf-16le-with-signature

 Those tags are taken from GNU Emacs and XEmacs, together with some

 aliases. Trailing ?-dos?, ?-unix?, and ?-mac? suffixes of coding tags

 (which give the end-of-line convention used in the file) are stripped

 off before the comparison with the above tags happens.

 Iconv Issues

 preconv by itself only supports three encodings: latin-1, cp1047, and

 UTF-8; all other encodings are passed to the iconv library functions.

 At compile time it is searched and checked for a valid iconv implemen?

 tation; a call to ?preconv --version? shows whether iconv is used.

BUGS

 preconv doesn't support local variable lists yet. This is a different

 syntax form to specify local variables at the end of a file.

SEE ALSO

 groff(1)

 the GNU Emacs and XEmacs info pages

groff 1.22.4 11 October 2021 PRECONV(1)

Page 4/4

